
B
ö

rger • C
istern

in
o

 (E
d

s.)

LNCS

5316

1

A
d

van
ces in

 So
ftw

are En
g

in
eerin

g

Egon Börger

Antonio Cisternino (Eds.)
T

u
to

ri
a

l
L

N
C

S
 5

3
1

6

Advances in
Software Engineering

 123

Lipari Summer School 2007
Lipari Island, Italy, July 2007
Revised Tutorial Lectures

Lecture Notes in Computer Science 5316
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Egon Börger Antonio Cisternino (Eds.)

Advances in
Software Engineering

Lipari Summer School 2007
Lipari Island, Italy, July 8-21, 2007
Revised Tutorial Lectures

13

Volume Editors

Egon Börger
Antonio Cisternino
Università di Pisa
Dipartimento di Informatica
Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy
E-mail: {boerger, cisterni}@di.unipi.it

Library of Congress Control Number: 2008940439

CR Subject Classification (1998): D.2, C.2.4, D.1.3, K.6.5, D.4.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89761-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89761-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12567669 06/3180 5 4 3 2 1 0

Preface

Work on this volume started with the Lipari Summer School on Advances in Soft-
ware Engineering, which the first editor organized together with Alfredo Ferro
from the University of Catania in July 2007. It was the 19th in a well-known se-
ries of annual international schools, addressed at computer science researchers.1

The themes of the courses, of four one-hour lectures each, ranged from domain
and requirements engineering (Dines Bjoerner, Technical University of Denmark,
and Florin Spanachi, SAP Research, Germany) over high-level modeling (Egon
Börger, University of Pisa, Italy) and software product line techniques (Don
Batory, University of Texas at Austin, USA) to evolvable software (Peter Sestoft,
Royal Veterinary and Agricultural University of Denmark) and the evolution
of service-oriented software architectures (Carlo Ghezzi, Politecnico di Milano,
Italy) in particular for Web services (Boualem Benatallah, University of New
South Wales, Australia) and the crucial problem of how to reach security in such
evolving distributed systems (Dieter Gollmann, Technical University Hamburg-
Harburg, Germany).

In two seminars the theme of evolvable software was further developed by
the presentation of new techniques for software manipulation with annotations
in Java (Vincenzo Gervasi, University of Pisa) and for the code-bricks-based
runtime composition of self-evolving programs (Antonio Cisternino, University
of Pisa).

For unforseeable personal circumstances Michael Jackson (London) was un-
able to deliver his lectures as planned. However, this volume contains his reflec-
tions on which directions software engineering should take to become a truly
engineering discipline.

This book is not a proceedings volume, but a collection of research papers
on themes treated in the school, written with the intent to produce a state-of-
the art compendium of recent advances in software engineering. However, the
contributions reflect the extensive discussions we had during the two weeks in
Lipari.

All contributions, written between August 2007 and January 2008, have been
reviewed, revised and reviewed again during the period February–August 2008.
We thank the 21 reviewers for their considerable and very constructive work,
although as usual they have to remain anonymous. Last but not least we thank
the authors for their commitment to this volume.

October 2008 Egon Börger
Antonio Cisternino

Table of Contents

Foundations and Methodology

The Name and Nature of Software Engineering . 1
Michael Jackson

A Modeling Language for Program Design and Synthesis 39
Don Batory

A Method for Verifiable and Validatable Business Process Modeling 59
Egon Börger and Bernhard Thalheim

SOA and Web Services

Service Oriented Architecture: Overview and Directions 116
Boualem Benatallah and Hamid R. Motahari Nezhad

A Guided Tour through SAVVY-WS: A Methodology for Specifying
and Validating Web Service Compositions . 131

Domenico Bianculli, Carlo Ghezzi, Paola Spoletini,
Luciano Baresi, and Sam Guinea

Software Technology

Software Manipulation with Annotations in Java . 161
Vincenzo Gervasi and Giacomo A. Galilei

Zero-Overhead Composable Aspects for .NET . 185
Rasmus Johansen, Peter Sestoft, and Stephan Spangenberg

Technologies for Evolvable Software Products: The Conflict between
Customizations and Evolution . 216

Peter Sestoft and Sebastien Vaucouleur

Security

Security in Distributed Applications . 254
Dieter Gollmann

Author Index . 277

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 1–38, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Name and Nature of Software Engineering

Michael Jackson

Department of Computing
The Open University

Milton Keynes MK7 6AA
United Kingdom

Abstract. Software engineering is discussed with particular reference to soft-
ware-intensive application systems—those whose fundamental purpose is to
bring about desired effects in a physical and human problem world by interaction
with a programmed machine. Such systems bring together a problem world—
typically composed of non-formal heterogeneous domains—and the formal or
semi-formal domain of the machine. Clean engineering separation of the two is
rarely, if ever, possible; and treating the problem world as an extension of the
formal machine is hard because of its non-formal nature. Software engineers can
learn from the structure and practices of the established branches of engineer-
ing—their treatment of formal analysis and reasoning, their practice of intense
specialisation, and their attention to particular instances no less than to general
concerns. Above all we can learn from their reliance on normal artifact design
and normal design disciplines—both the golden fruit of specialisation.

Keywords: Component structure, formal, non-formal, normal design, problem
world, radical design, software-intensive systems, specialisation.

1 Introduction

The term ‘software engineering’ came into common use as a result of the first NATO
Software Engineering Conference in 1968 [30]. The NATO Science Committee had
chosen the phrase because it suggested “the need for software construction to be
based on the types of theoretical foundations and practical disciplines that are tradi-
tional in the established branches of engineering.” A ‘software crisis’ of failed pro-
jects and unsatisfactory software systems was already widely recognised and much
talked about. By contrast, engineers who designed and built automobiles, or aero-
planes or bridges seemed to have achieved far higher levels of success and reliability.
The committee’s view was clear: software developers should learn to emulate the
established engineers by adopting similar or analogous theories and practices, whether
already known or yet to be devised.

Surprisingly, the organisers and participants at the conference, and at the follow-up
conference that took place in the following year, did not proceed to investigate explic-
itly what the established engineering branches did: how they carried out their work;
how they developed and exploited their theoretical foundations; how they were organ-
ised; or what their practical disciplines were and how they had been developed. Be-
yond the proposal, in an invited talk by Doug McIlroy, that a software components

2 M. Jackson

industry should be encouraged, capable of offering catalogues of routines for per-
forming such operations as input and output or calculating trigonometric functions,
there is remarkably little reference in the conference transcripts to those practices of
the established branches that software engineers were invited to emulate.

The purpose of this paper is to repair this omission to some small extent. The pa-
per’s title is inspired by the 1932 Leslie Stephen lecture at Cambridge, “The name and
nature of poetry”, given by the poet and classical scholar A E Housman [18]. He be-
gan by pointing out that “When one begins to discuss the nature of poetry, the first
impediment in the way is the inherent vagueness of the name, and the number of its
legitimate senses.” He went on to characterise the nature of poetry, as opposed to
mere versification or linguistic elegance or felicity, and to locate it in the landscape of
literature in general. He identified the essence of poetry as its effect on the reader,
even claiming that in his own case the effect was physical: “if a line of poetry strays
into my memory while I am shaving, my skin bristles so that the razor ceases to act.”

My intent is to characterise software engineering in a way similar to Housman’s
characterisation of poetry: to define the meaning of the term; to distinguish it from
mere programming and from facility with formalisms; to locate it in the landscape of
engineering in general; and to identify some of the practical implications of these ideas.

The chief substance of the paper is contained in the three following sections. Sec-
tion 2 defines software engineering as the development of a programmed machine
that will bring about desired effects in the physical problem world. Section 3 briefly
reviews some of the most significant practices in the established engineering
branches—most notably, the very high degree of specialisation and the evolution of
specialised normal design—and explores some of their consequences. Section 4 re-
turns to the topic of software engineering to draw some comparisons between prac-
tices there and in the established branches. Some concluding reflections are offered in
Section 5.

Because the paper draws lessons from engineering notions and practices, I must
begin with a disclaimer. I have neither the education nor the practical experience of an
engineer. My understanding of engineering is drawn from the everyday observations
that are available to all of us, and from some of the excellent books written for lay
readers by engineering practitioners and academics. Among them are deservedly well
known books by Henry Petroski [35, 36], and illuminating books by several other
authors [10, 13, 25, 40]. An outstanding book by W G Vincenti [45] explores five
case studies in the development of aeronautical engineering in the first half of the
twentieth century and reflects deeply on the nature and growth of engineering knowl-
edge and practice. A strong argument can be made that time devoted to reading and
discussing these books, especially Vincenti’s, would be well spent in any software
engineering course.

2 What Is Software Engineering?

Just as automobile engineers develop automobiles, so software engineers develop
software. In both cases, the engineer aims to solve some problem, to satisfy some
human need. Surrounding each activity is a complex structure of supporting and asso-
ciated activities and concerns—economic, organisational, managerial—and an equally

 The Name and Nature of Software Engineering 3

complex structure of constraints and goals in the larger human context—political,
ethical, social, legal, and others. These structures may be regarded, perfectly legiti-
mately, as integral parts of the engineering context, and therefore integral topics in an
engineering education. But for the theme of this paper they are secondary to the tech-
nical concerns: so I shall ignore them, and focus only on some aspects of the technical
development of the engineered artifact itself.

In short, like Housman, I will discuss only a few chosen aspects of my topic, omit-
ting much that is undoubtedly important. I do not purport—and would not be compe-
tent—to offer a comprehensive survey of software engineering practice and theory in
all its rich variegation.

2.1 Symbolic Problems

In software development we may be concerned with symbolic problems. A symbolic
problem is one whose subject matter can be entirely captured in mathematical sym-
bols. The computer, executing our software, is required to compute a symbolic output
related in some specified way to the symbolic input. Examples of symbolic problems
are: computing the hash of a text; playing chess against an opponent, where the input
is some encoding of the opponent’s moves and the required output is a winning se-
quence of moves by the computer; and the calculation of the convex hull of a set of
points in Euclidean 3-space, the set of points being given as a sequence of real num-
ber triples and the desired output being a subset of the input triples.

Symbolic problems can be characterised as being formal and mathematical. Al-
though the computer itself is a physical machine, it has been carefully engineered by
the hardware designers to perform with high reliability as a symbol processor. If the
developers of the compiler or interpreter, and of the operating system, have been
equally successful, the resulting platform will reliably execute programs written in the
appropriate well-defined programming language. The software developer can then
ignore the possibility of computer or system software malfunction, and focus solely
on the formal, mathematical aspects of the problem. In the words of Herman Weyl
[46], this means that operations on the symbols are carried out “without ever having
to look at the things they stand for.” The resulting view of software development, as
clearly expressed by Dijkstra [8], is that “the programmer’s ... main task is to give a
formal proof that the program he proposes meets the equally formal functional speci-
fication.” Software development is a formal, mathematical, discipline. The essential
criteria of success are correctness and minimal computational complexity.

Because the computation is carried out by a physical device, even symbolic prob-
lems may force a variety of non-formal concerns on the developer’s attention. Inputs
must somehow be made available to the program, and outputs communicated to the
user: input and output operations take the program out of the ambit of the internal
purely electronic parts of the machine—in the evocative phrase of [16], outside the
‘silicon package’. Real numbers can be represented only approximately in the com-
puter: the treatment of error terms in calculations can in principle be a formal disci-
pline; but, like the three-body problem in Newtonian mechanics, it is intractable and
in practice must be less than fully formal. Some large symbolic problems, such as
protein folding or searching for evidence of extraterrestrial life, demand distributed
processing over a large number of processors, the connections among the processors

4 M. Jackson

being inevitably imperfect. In the most demanding critical applications the program-
mer may be required to guard as effectively as possible against malfunctions of the
computer hardware, including the silicon package. Even in less demanding applica-
tions it may be necessary to guard against the far more probable failures of the operat-
ing system, or of other programs that are sharing the same platform and may cause
failures—such as resource starvation or a system crash—against which the operating
system offers no protection. The formal mathematical view captures a central and
vital concern of programming, but far from the whole of it.

2.2 Concrete Problems

Although the computer can be regarded as a symbol processor, symbolic problems are
only one very limited kind of problem to which it can be applied. In concrete prob-
lems, its role is to function as one part among many in a physical system, interacting
with the problem world outside itself to achieve some purpose in that world. (We
speak of the problem world because it is here that the problem to be solved is located.
The more commonly used term environment, by contrast, misleadingly suggests that
the real problem is located in the machine, and that the environment is at best a neu-
tral ambience and at worst a source of irritating obstacles to its solution.) Systems of
this kind, whose purposes are located in the physical world and achieved by interac-
tion with it, are often called software-intensive systems. Although the computer is
only one part among many, its role is intense and crucial, monitoring and constraining
the behaviour of the other parts and hence of the whole system. In its interactions with
the problem world it detects events and state changes caused by the other parts of the
world, and causes events and state changes in the world in response. The total effect
of these interactions is to achieve the system’s purpose. We may illustrate this view in
a generalized problem diagram [20]:

Fig. 1. Generalised Problem Diagram

The machine is a computer executing the software. It interacts with the problem
world at an interface A of shared phenomena—essentially, shared events and states.
The requirement is a set of conditions on the problem world whose satisfaction the
machine must ensure, expressed in terms of some phenomena B. The success or fail-
ure of the engineered software is judged with reference to its observable effects in the
problem world. We judge a theatre booking system by asking whether booking is
convenient, whether duplicate sales of the same seat at the same performance are
avoided, whether the best available seats are sold in preference to inferior seats at the
same price, whether correct payment is collected, and so on. For a proton therapy
system we judge whether the patients receive their prescribed doses in the prescribed
locations and directions, and whether the equipment is used efficiently and safely. For
a lift control system we judge whether the service is efficient, whether passengers are
delivered to the floors they have requested, whether acceleration of the lift car is

Requirement Machine
Problem
World

A B

 The Name and Nature of Software Engineering 5

smooth, whether the indicated information about lift position and direction of travel is
reliable and conveniently displayed, whether passenger safety is ensured in the event
of equipment malfunction, and so on.

In general, the sets of phenomena A and B are distinct, though not necessarily dis-
joint. The machine can therefore ensure satisfaction of the requirement only by rely-
ing on some given properties of the problem world that relate the phenomena A to the
phenomena B. These are properties that hold regardless of the behaviour of the ma-
chine. In the lift control system, they include the disposition of the lifts in the shafts,
the arrangement of the floors, the causal links from the motor switch to the lift motor,
from the motor to the winding gear, and from the winding gear to the lift car move-
ment, the properties of the sensors that detect the presence of a lift car at a floor, the
possible and probable behaviours of the lift users, and so on. If we represent the prop-
erties of the machine as M, the requirement as R, and the given properties of the
problem world as W, then for the system to meet its requirement the entailment must
hold: M,W R. That is: a machine with the properties M, installed in a problem
world whose given properties are W, consistent with M, will ensure satisfaction of
the requirement R.

2.3 The Problem World as a Given

The problem world is richly structured, and its parts and their given properties may
support very complex causal and other relationships by which the machine and the
world can affect and respond to each other. Investigating and analysing these proper-
ties is therefore a large part of the work of software engineering.

The view adopted here, that the problem world is given, is a simplifying assump-
tion that allows a distinction between software engineering and system engineering.
Software engineering is concerned with developing software for the given problem
world; system engineering embraces also the possibility of achieving the system’s
purposes by changing the problem world directly. In a lift control system, for exam-
ple, one possible requirement is to allow only certain privileged people to request
travel to certain floors. For the given lift equipment this requirement will be impossi-
ble to satisfy if the interface A provides no phenomena by which the machine could
detect that the requester is one of the privileged people: to satisfy the requirement it
will then be necessary to add some physical device, such as a card reader, to the prob-
lem world. Here, we would regard this addition as lying outside the scope of pure
software engineering per se. If the problem world is enlarged by the addition of the
card reader, and interface A expanded to include communication between the reader
and the machine, the problem will then fall once again within our scope.

This assumption, that the problem world is given, and the associated distinction be-
tween software and system engineering, is adopted to simplify the thesis of this paper,
not as a recommendation for engineering practice. In some projects the assumption
will be completely realistic. In others, software development will proceed, as it
should, in cooperation with engineering activity designed to change the properties of
the problem world to contribute to the system’s purpose.

6 M. Jackson

2.4 Non-formal Problem Domains

The problem world for a concrete problem to be solved by a software-intensive sys-
tem is almost always heterogeneous and invariably non-formal. Typically, its do-
mains—the parts of which it is composed—can be drawn from many sources: the
natural world—for example, the earth’s atmosphere for an avionics system; human
participants—for example, the staff and users of a lending library, or the driver of a
car; electrical and mechanical engineered devices—for example, the physical compo-
nents of a lift or an ATM; other software-intensive systems—for example, those of
banks and telecommunications services; constructed, largely static, parts of the
world—for example, the lines of a railway network or the runways of an airport; con-
crete lexical components, in which information has been encoded for the machine to
read—for example, credit cards and bar-coded labels; and others.

The many different parts of the problem world are proper objects of scientific the-
ory and investigation, but they are not formal systems: any formal description useful
to a software engineer is only an approximation. They exhibit many different given
and potential properties, and demand many different languages to express those prop-
erties adequately. At the granularities significant for software-intensive systems, even
the most reliable parts of the problem world are seldom as reliable as the CPU of a
desktop computer, partly because of their inherent nature and partly because their
useful functionality is more vulnerable to the vicissitudes of the other parts of the
world with which, by design or accident, they interact.

Because the problem world is central to a software-intensive system, its given
properties W and its desired properties R are necessary subjects of description and
reasoning. But formal description and reasoning, which are vital for a reliable process
of software development, have a very different character when interpreted in non-
formal domains.

2.5 Reasoning in Non-formal Domains

Formal reasoning is necessarily dependent on abstraction: we choose some axioms
and some alphabet, and use the axioms to reason over the elements of the alphabet.
The useful results that we hope for from our reasoning are theorems, capturing truths
that were not evident to us at the outset or of which we want stronger conviction. In a
formal world this process is as reliable as our capacity to reason correctly.

In a non-formal world there are several obstacles to reliability in formal reasoning.
To make our reasoning useful we must begin by establishing a correspondence be-
tween the formal terms we intend to use and the physical phenomena they denote.
Here there is an immediate difficulty. In a system to control road traffic, we may
decide to reason about pedestrians and their use of the controlled crossings provided
for them: for example, to base some design decisions on the maximum and minimum
time taken to cross the road. But what, exactly, is a ‘pedestrian’? A child in a pedal
car? A cyclist pushing a bicycle with an attached trailer? A user of a motorised invalid
carriage? Whatever alphabet of formal terms—for example, of predicates, events, and
entities—we choose, there will be some hard cases in the problem world for which we
cannot easily decide whether or not they are properly denoted by a particular formal
term. The best we can do is to choose our alphabet so that hard cases are sufficiently

 The Name and Nature of Software Engineering 7

rare in the particular world we are reasoning about. This choice of alphabet, and its
necessarily non-formal interpretation—that is, the mapping between the alphabet and
the real phenomena of the problem world—constitute the fundamental basis of any
formalisation.

Given an acceptable alphabet we can record or establish some truths—axioms, or
perhaps theorems, in our formal system—about the world. In the traffic system, for
example, we may need a theorem about a road segment guarded by sensors at its
ends: the number of vehicles present in the segment is equal to the number that have
entered minus the number that have exited. However, cars are sometimes transported
on trucks. If a truck enters the segment and unloads the car it is carrying, our desired
theorem is invalidated by this counterexample. Again, the best we can do is to choose
our putative theorems so that they will hold well enough in most of the situations that
will actually arise.

In a non-formal world the abstraction process of choosing an alphabet itself opens
the door to error. We can never be certain that we have not excluded from the chosen
alphabet, or from the perception that underpins a chosen axiom, some phenomenon
that will eventually prove to vitiate our reasoning. This kind of error is rife in reason-
ing about safety or security. In a famous case [22] the TENEX operating system con-
nect call, to access a directory, checked a password string argument. If a left-to-right
scan of the string encountered an erroneous character, it terminated and the system
waited three seconds before reporting failure (to prevent an attacker from estimating
where in the string the error had been found). However, if the scan encountered the
boundary between an assigned and an unassigned page, the connect call reported a
page fault to the caller, revealing that the submitted string was correct at least up to
the end of the assigned page. By placing successive strings on such a boundary, an
attacker could reduce the task of finding the correct password from exponential to
linear complexity in the password length. Essentially, the attacker enlarges the alpha-
bet of relevant phenomena to include the phenomenon page-fault that was wrongly
omitted from the designer’s alphabet. This attack illustrates a general obstacle to cer-
tainty that we might dignify as the Principle of Unbounded Relevance.

In a non-formal world, then, not only do the elements of our chosen alphabet rest
on uncertain foundations. Worse, any alphabet we choose must always omit some
phenomena—and we cannot be sure which ones—that may invalidate our abstractions
and upset our calculations. How, then, can we reason usefully in a non-formal prob-
lem world? We must recognise that all the steps in our descriptive and reasoning
processes reflect decisions to adopt assumptions: assumptions that our chosen alpha-
bet has few enough hard cases; assumptions that our chosen axioms are true often
enough; and assumptions that what we would wish to regard as proven theorems are
not vitiated by phenomena and considerations that we have erroneously neglected.
Weaving these frail foundations of assumption into a structure strong enough to sup-
port the necessary degree of confidence in the reliability of the resulting system is a
major concern in software engineering.

2.6 Relating Formal and Non-formal

Development of a software-intensive system, then, involves a combination of formal
concerns, in the construction of programs, and non-formal concerns, in the understand-
ing, description and analysis of the requirement and given problem world properties.

8 M. Jackson

The question how formal approaches to program construction are to be related to the
treatment of the non-formal problem world—and to the less formal aspects of the ma-
chine itself—is central to our whole understanding of software engineering.

One view of software engineering is that we should try to maintain a firm separa-
tion between its formal and non-formal aspects. This was the view of Dijkstra, who
disdained the very term ‘software engineering’. He explained his view, with great
clarity, in responding to comments on the published text of his invited talk at the
ACM Computer Science Conference of 1989 [8]:

“The choice of functional specifications—and of the notation to write them
down in—may be far from obvious, but their role is clear: it is to act as a
logical firewall between two different concerns. The one is the ‘pleasantness
problem,’ i.e., the question of whether an engine meeting the specification is
the engine we wou1d like to have; the other one is the ‘correctness problem,’
i.e., the question of how to design an engine meeting the specification. I
firmly believe that whenever we succeed in erecting such a firewall, the effort
will pay off handsomely. The reason for this belief of mine is that the two
concerns deserve separation because the two problems are most effectively
tackled by totally different techniques. (They are currently psychology and
experimentation for the pleasantness problem and symbol manipulation for
the correctness problem.)”

In the problem diagram of Figure 1, the logical firewall would be erected roughly
on the line marked A, where the machine interacts with the problem world at its inter-
face of shared phenomena: some adjustment of the position of the firewall may be
necessary, moving it slightly closer to the internals of the machine to exclude any
irreducibly non-formal aspects of the interface phenomena. In this way the task of the
programmer would be kept free of non-formal concerns, and could be tackled by
purely formal methods. On the other side of the firewall the non-formal properties
would be addressed by problem world experts using non-formal techniques.

Clearly, the separation is possible only when the logical firewall—the formal
specification—can be constructed. The problem world experts must be able to de-
velop a complete specification of the machine’s behaviour at its interface with the
problem world. If we denote this specification by S, then the whole problem falls into
two parts. The problem world experts are responsible for developing a specification
S, consistent with W, such that S,W R. The programmers are responsible for
developing a machine to satisfy the formal specification while leaving the problem
world properties W unimpaired: that is, a machine whose properties M ensure that
M S.

A different approach to handling the relationship between the formal and the non-
formal in software-intensive systems is to treat the non-formal problem world for-
mally, in this respect assimilating it to the machine and regarding both as parts of one
formal system. The fullest expression of this approach is found in a relatively ne-
glected paper [28]. Essentially, the approach reported there distinguishes the machine
from the problem world, but in effect regards the two as constituting a single formal
system. The fully formal requirement is assumed to be given in terms of some phe-
nomena of the problem world, represented by reality variables. The values of these

 The Name and Nature of Software Engineering 9

reality variables are functions, often functions of time, that themselves vary over time.
For example, in a system to control a vehicle on a track, the position of the vehicle
might be given by the variable function p(t), while its acceleration is given by a(t).
The requirement and the problem world properties are represented by equations over
the reality variables within the single formal system. The machine—that is, the pro-
gram—is developed by a refinement process in the style of Dijkstra’s weakest
precondition calculus. Starting from the requirement expressed in reality variables,
the refinement eventually arrives at a program text by appealing to properties of the
problem world.

Another formal treatment of the problem world is discussed in [32]. The machine
and problem world are called respectively the system and the environment, and the
interactions between them are mediated by sensors and actuators. Four sets of vari-
ables are identified (to which the approach owes its soubriquet “Four Variable
Model”). The sets of monitored and controlled variables of the environment are de-
noted by m and c, while i and o denote the sets of values that the machine reads from
the sensors and writes to the actuators. Five relations over vectors of time functions of
these variable sets are defined:

SOF: i ↔ o captures the specification of the machine behaviour;
IN: m ↔ i and OUT: o ↔ c capture the properties of the sensors and actuators
respectively;
NAT: m ↔ c captures the given environment properties; and
REQ: m ↔ c captures the requirement.

The formula NAT ∩ (IN•SOF•OUT) ⊆ REQ characterises the acceptability of the
system. That is: the requirement REQ is satisfied by the behaviour of the whole sys-
tem, in which the environment (whose given properties are described by NAT) is
placed in parallel with the machine (whose behaviour, when combined with the sensors
and actuators, is IN•SOF•OUT). This second approach differs in two ways from the
approach of [28] described in the preceding paragraph. First, it proposes an explicit
generalised structuring of the problem in its context, this structure being a more elabo-
rate form of the structure shown in Figure 1. Second, it is less overtly methodological,
proposing no specific calculus or refinement structure for software development. How-
ever, the Four Variable Model has formed the basis of more than one specific devel-
opment technique [9, 15].

These two formal approaches, along with others not mentioned here, embody im-
portant contributions to our understanding of software engineering: some, at least, of
our reasoning about the problem world must surely be formal if it is to be more than
guesswork. Still, the limitations of formal reasoning applied to a non-formal problem
world remain severe. To develop a successful software-intensive system we need much
more than formal description and reasoning. Some of what we need can be learned
from the practices of the established engineering branches, to which we now turn.

3 Some Engineering Practices

This section briefly reviews some of the practices of the established engineering
branches, drawing especially on the writings of Vincenti [45] and Petroski [35, 36].

10 M. Jackson

These practices are, of course, many and varied, and demand wider illustration and
deeper explanation than the superficial account that can be given here. At root some
of the most important practices stem, directly and indirectly, from the rich structure of
specialisations that characterises engineering: we begin there.

3.1 Specialisation in Engineering

In any technical field of human endeavour, specialisation is the fundamental precon-
dition for improvement over time. When an advance is made, successful development
of the field demands the capacity to capture it, to fit it into an appropriate intellectual
and cultural structure, and to retrieve and exploit it wherever the knowledge it embod-
ies is apposite. In the most primitive stages of development, when relatively few
advances have yet been made, people of extraordinary ability can master all the avail-
able knowledge of a field, or even of several fields. As time passes, and the depth and
breadth of knowledge increase, the range over which one person can achieve mastery
becomes relatively smaller. Knowledge gained must become the treasured possession
of a community of specialists if it is to be retained for future use. Without a commu-
nity of specialists to tend and nurture it, it may become effectively unavailable when
needed because it has been hidden in a vast sea of other knowledge, or even entirely
lost by universal neglect.

The established branches of engineering illustrate this process of increasing spe-
cialisation in a very high degree. There are specialisations by engineering artifact—
automobile, aeronautical, chemical engineering; by problem world—civil and mining
engineering; and even by requirement class—industrial and transportation engineer-
ing. There are also specialisations by applicable theoretical foundation—control and
structural engineering; by product components—electric motors, internal combustion
engines, TFT screens; by technology—welding, reinforced concrete, conductive plas-
tics; and in other dimensions too. These specialisations have evolved in response to
changing needs and opportunities: they do not fall into any simple hierarchical struc-
ture. They focus, in their many dimensions, on overlapping areas at every granularity,
and on every concern from the most purely pragmatic to the most rigorously intellec-
tual, from engineering that is almost craft to engineering that relies explicitly and
systematically on mathematics and science.

3.2 Normal Design

The fundamental benefit of specialisation is what Constant [5], calls normal design,
and all that flows from it. Following Constant, Vincenti [45] draws a strong distinc-
tion between normal and radical design. Most engineering practice is the practice of
normal design, in which the task is to make an incremental improvement in a product
class whose firmly established and well understood standard design already has a long
record of success:

“The engineer engaged in such design knows at the outset how the device in
question works, what are its customary features, and that, if properly designed
along such lines, it has a good likelihood of accomplishing the desired task. A
designer of a normal aircraft engine prior to the turbojet, for example, took it
for granted that the engine should be piston-driven by a gasoline-fuelled,

 The Name and Nature of Software Engineering 11

four-stroke, internal-combustion cycle. The arrangement of cylinders for a
high-powered engine would also be taken as given (radial if air-cooled and in
linear banks if liquid-cooled). So also would other, less obvious, features
(eg, tappet as against, say, sleeve valves). The designer was familiar with en-
gines of this sort and knew they had a long tradition of success. The design
problem—often highly demanding within its limits—was one of improvement
in the direction of decreased weight and fuel consumption or increased power
output or both.”

By contrast:

“In radical design, how the device should be arranged or even how it works is
largely unknown. The designer has never seen such a device before and has
no presumption of success. The problem is to design something that will
function well enough to warrant further development.”

The phrase normal design can be understood in two senses. It denotes the structure
and properties common to all instances of a particular class of artifact. It also denotes
the practical discipline that designers follow in developing new instances of the class.
The practical design discipline presents a repertoire of options among which the de-
signer must choose, and parameters for which values must be set. In some extreme
cases—for example, in the design of a small electrical power transformer—the pa-
rameter values are determined by a fixed procedure. The normal discipline also em-
bodies what is known about analysing proposed designs—in civil engineering, for
example, the techniques of stress calculations for load-bearing structures of specific
types. It also embodies the lessons learned from past failures about the risks that de-
mand particular and careful application of those techniques—for example, the need to
analyse the aerodynamic properties and vertical oscillation modes of a suspension
bridge roadway, to avoid a failure of the kind that destroyed the Tacoma Narrows
bridge in 1940.

3.3 The Fruit of Specialisation

Normal design, in both senses, is the product of a long evolution. It can emerge only
from specialisation, because it demands the concentrated attention of a community of
specialists over a long period. From the radical design of Karl Benz’s three-wheeled
car of 1886 it took about thirty five years for normal automobile design to evolve. By
1920 normal design mandated four wheels, internal combustion engine, gearbox,
electric starter motor, a closed cab (except for sports and some touring cars), pneu-
matic tyres, and four-wheel drum brakes. At that point, automobile designers could
properly be said to know what were the customary features of a car and how to con-
figure them to good advantage, and to have a good likelihood of producing a solid,
reliable vehicle. Establishment of normal design for a product class does not mark the
end point of evolution and development: on the contrary, it marks the point at which a
stable base has been created for reliable further advances. Continued steady progress
in the nine decades following 1920 has brought cars to their present level of refine-
ment, the result of a hundred and twenty years of concentrated specialisation in the
industry.

12 M. Jackson

The specialisation necessary for this kind of progress is very intensive. In one
of the five case studies described in [45], William F Durand and Everett P Lesley,
professors of mechanical engineering at Stanford University, devoted themselves over
ten years, from 1916 to 1926, to experimental wind-tunnel studies of the relative per-
formance of aircraft propellers of many different shapes; Lesley continued to work on
propellers for another twelve years until 1938. In another of Vincenti’s case studies,
the problem to be solved was the development of a satisfactory technique for flush
riveting. Riveting the metal skin of an aircraft to the frame by round-head rivets
caused significant aerodynamic drag that could be eliminated by ensuring that the
rivet head was flat and flush with the skin. Because the metal skin was thin—1mm
was not untypical—it was far from obvious how this could be done while avoiding
damage to the rivet and weakening of the skin that would lead to loosening under the
stresses of flight operation. In the mid-1930s engineers at a group of aircraft manufac-
turers studied the problem intensively. They experimented with various configura-
tions of rivet shape and various ways of forming a recessed ‘dimple’ in the frame and
skin. By around 1940 the design problem was solved, though improvements in the
manufacturing process continued to be made into the 1950s and beyond. Wherever a
problem is recognised, or an opportunity for worthwhile improvement, specialised
normal design demands intense attention to every design detail.

3.4 Component Structure

A central theme in any normal design is component structure: that is, how the func-
tionality of the product in question is distributed over its component parts at many
levels, and how those parts are configured so that they work together effectively to
embody the operational principle of the design. Quoting Polanyi [37], Vincenti ex-
plains that the operational principle of an engineering artifact is “how its characteris-
tic parts ... fulfil their special function in combining to an overall operation which
achieves the purpose [of the artifact].” He cites the remarkable example [3] of Sir
George Cayley’s statement, published in 1809, of the operational principle of modern
aircraft: “to make a surface support a given weight by the application of power to the
resistance of air.” A century before the Wright brothers, this operational principle
clearly distinguished modern aircraft from the hot air balloons that had achieved some
success in the eighteenth century and from the rigid dirigible airships that would be
build a hundred years later, in the first decades of the twentieth century. In a more
mundane example, wooden cart wheels and wire-spoked bicycle wheels differ radi-
cally in their operational principles: in a wooden wheel the spokes are in compression,
but in a wire wheel they are in tension.

The decomposition of system function is, of course, only one conceptual part of the
process of component structure design. The identified components must be arranged—
and, if necessary, modified—to work together to achieve the system purpose. The
design of this composition is itself a major part of normal design. What a community
of engineers learns in the course of a long history of design advances is not only how
to design the many components that provide the product’s functionality, but also how
best to configure them together. At the highest level an advance in component compo-
sition may involve the merging of functionalities by combining previously distinct
functions in one component. In automobile engineering, the introduction of the unitary

 The Name and Nature of Software Engineering 13

body in 1938 and of tubeless tyres in 1954 are examples of such advances. At a lower
level composition involves the development of interfaces. The most cursory inspection
of a car shows that every major interface between components has itself been the ob-
ject of a design evolution. Each particular interface is closely tailored to the compo-
nents it connects and to their interaction and cooperation. Where possible the interface
is fully integrated into the components, as, for example, in the split bell-shaped hous-
ing within which the engine is connected to the clutch and gearbox.

For obvious practical reasons, a community of specialists engaged in normal de-
sign of products of a particular class will, over time, develop a refined nomenclature
to refer to the normal components at the various structural levels of the product. No-
menclature emerges to denote the different classes of artifact that depend on different
operational principles: swing bridge, bascule bridge, suspension bridge, arch bridge,
inverted arch bridge, cantilever. Each will have its component nomenclature: piers,
chains (or cables), hangers, anchorage, voussoirs. The existence of such a component
nomenclature is a precondition for convenient discussion of design alternatives, and a
salient symptom of specialisation and normal design.

3.5 Formal Analysis in Normal Design

The intellectual activities of formal reasoning and calculation play an important role in
normal engineering, but they are conceptually subservient to the activity of selecting a
design from the corpus of normal designs known to be candidates for the purpose in
hand. A normal design brings with it a repertoire of formal analysis techniques known
to be applicable. By deviating too far from the normal design configuration—let alone
by selecting a radical design in its place—the engineer is likely to render the current
tools of analysis and calculation unreliable or even totally ineffective.

One of the criteria of design selection is therefore availability of applicable analy-
sis techniques specifically adapted to the putative design. When Robert Stephenson
was considering possible designs for a railway bridge over the Menai Strait, he con-
sidered, but eventually rejected, a suspension bridge. According to [4], quoted in [36],
Stephenson believed that the heavy loads imposed by railway traffic—which at that
time had never been carried by a suspension bridge—would alter the curvature of the
suspension chains so dramatically that “the direction and amount of the complicated
strains throughout the trussing [would] become incalculable as far as all practical
purposes are concerned.” In other words, in the absence of analytical or computa-
tional tools to predict how close to failure the design would be, Stephenson did not
feel able to proceed with a suspension bridge design.

The broad intellectual structure, then, is the selection of a well-understood normal
design pattern, followed by a combination of instantiating the pattern by choosing
values for the options and for the variable dimensions, and formally analysing the
resulting design instance to determine whether the choices made enable the design to
satisfy the requirements. The process is likely to be iterative, options and parameter
values being adjusted in the light of analysis of an earlier choice or of a subset of the
possible choices. The formal analysis is crucial here, and depends fundamentally
on scientific knowledge—for example, of static or dynamic mechanics: but without
the initially chosen normal design there is nothing to analyse. An arbitrarily chosen

14 M. Jackson

configuration, owing nothing to any previously evolved normal design, will have
many disadvantages: in particular, it is likely to be intractably difficult to analyse.

Yet, because the problem world and the artifact are physical and therefore non-
formal, the results of the formal analysis must still be treated with caution. Normal
design practice embodies knowledge of what formalisations are likely to yield more
reliable models in particular cases; but the initial chosen formalisation itself—the
analytical model of the artifact or problem world—is still only an approximation, and
the formal reasoning and calculation is correspondingly unreliable. Unreliability in-
creases as the chain of reasoning lengthens, especially where reasoning about the
combined properties of component assemblages is concerned. As a noted structural
engineer wrote [1]:

“It must never be forgotten, however, that the primary models of loads, materi-
als and structure are all idealisations and simplifications of the real world, and
the behavioural output of the composite model is merely an infallible conse-
quence of the information contained in the primary models, not of their real-
world counterparts. Any predictions made from the output of the composite
model about the likely behaviour of the completed structure must be treated
with intelligence and care.”

3.6 Normal Properties and Analysis

It is not too much to say that in dealing with the physical world formal reasoning can
show the presence of errors, but not their absence. The practical empirical evidence
from a long evolution of successful normal design of each class of artifact retains its
central role in avoiding failure.

The configuration and properties that characterise each class are not formally, or
even explicitly, defined. Instead there is a broad consensus among practitioners in the
particular engineering area of the bounds within which a proposed design can be con-
sidered to be normal, and outside which it should be considered to be novel and there-
fore potentially problematical. The case of the Tacoma Narrows Bridge, destroyed in
1940 by the effects of a wind of only 40mph, illustrates the point well [17]. The
bridge designer, Leon Moisseiff, had adopted a somewhat novel mathematical theory
for analysing the performance under load of a suspension bridge. In accordance with
this theory the girders stiffening the bridge roadway were eight feet deep instead of
the 25 feet proposed by the Washington State Highways Department. The roadway
itself was also very narrow, being required to carry only light motor traffic. The re-
sulting slenderness of the bridge, measured as the ratio of span to roadway width,
exceeded that of the Golden Gate Bridge, completed only three years earlier, by more
than 50%, the Golden Gate Bridge itself having exceeded the earlier maximum ratio
by 40%. Theodore L Condron, consultant engineer for the insurers, pointed out this
radical aspect of the design, and proposed that the roadway be widened from 39 feet
to 52 feet to increase its stiffness. The proposals both of Condron and of the High-
ways Department were judged excessively conservative, and the construction of the
designed bridge went ahead with the well known disastrous consequences.

The eventual consensus among engineers was that Moisseiff’s deflection theory
had considered only lateral deflections of the roadway. It was vertical oscillation that
destroyed his bridge. With the wisdom of hindsight we are surprised at his seemingly

 The Name and Nature of Software Engineering 15

obvious error. But it was not obvious to his fellow engineers, whether researchers or
practitioners. What was obvious to Condron was simply that the proposed design had
strayed too far outside the bounds of the normal. For that reason alone it should be
recognised as potentially dangerous.

3.7 Normal Design and Requirements

The requirements of a system are, essentially, its desired properties. In the context of
a normal design discipline, the desired or expected properties of the final product are
a combination of properties stemming from two sources. Some analytical properties
correspond to conscious design goals and choices, and must be confirmed by analysis
and calculation; but others are standard properties that inevitably result from adopting
the normal design. These standard properties may be known either explicitly or tac-
itly. If questioned about such a tacitly known property the engineer might well reply
“I don’t think that has ever been a problem with this kind of design;” or, questioned
about an explicitly known property, might reply “That’s completely standard—look,
let me see if I can reproduce the calculation that justifies it.” In a highly developed
normal design discipline, these standard properties, whose justification is tacitly un-
derpinned by the fact that the design adopted is the normal design, will greatly out-
number the analytical properties—those that demand explicit analytical justification.
The analytical properties are, roughly speaking, those that vary with the design op-
tions and parameter values to be chosen by the engineer within the relatively tight
constraints of the normal design: the analysis validates these choices. The standard
properties correspond, roughly speaking, to every design choice made by all those
who have contributed successfully to the evolution of the current normal design. The
richer the evolution, the larger the number of these past design choices that by now
are taken for granted.

Normal design makes requirements much easier to state. The requirements them-
selves will often belong to the standard requirements class corresponding to the prod-
uct class; also, the existence of the standard product design invites the customer, or
the customer’s advisers, to state the requirements in terms of the chief design parame-
ters. The requirement statement then falls naturally into two parts: one identifying the
product class, and the other stating the parameter values. So a requirement for a desk-
top PC, for example, may be almost as succinct as ‘Desktop PC, mid-tower, 500GB
HDD, dual-layer DVD±R, 4GB RAM, 3GHz, 802.11b/g wireless;” and a requirement
for a family car may be almost as succinct as “5-door hatchback, 1.6l diesel, 4-speed
auto gearbox, sun roof, alloy wheels, leather seats.” The normal design, of course, is
hierarchical, and so too are its implicit requirements: the desktop PC requirement
clause “500GB HDD” states not only the “500GB” storage capacity parameter of the
PC, but also mentions the name of a normal design component class, “HDD,” on
whose standard properties the customer is again entitled to rely.

Of course, these are extreme and exaggerated examples. Individual purchasers of
PCs and cars often have many detailed preferences, and their initial desires may be
very dimly perceived and far removed from any product specification. However, it
remains true that for a normal design product much of the semantic weight of the
requirement statement is carried by the name of the product class. That name brings
with it a large set of requirements that the variants of the product class are known to

16 M. Jackson

be capable of satisfying, and a set of product design options and parameter values
whose possible choices are mapped by experience to the possible requirements. For a
radical design, of course, the requirements are harder to state. First because in the
absence of the standard properties inherent in a normal design it becomes necessary to
state the requirements explicitly in far more detail; and second because in the absence
of the known structure of design choices and values it is much harder to find a good
structure for the requirements statement. Development of explicit detailed require-
ments from first principles is very expensive, and unlikely to succeed.

3.8 The Role of Failure

Petroski emphasises [36] the fundamental importance of failure in engineering practice:

“Engineering advances by proactive and reactive failure analysis, and at the
heart of the engineering method is an understanding of failure in all its real
and imagined manifestations.”

It is not only for ethical or legal reasons that engineering failures demand careful
investigation and analysis. The experience and analysis of failure contributes vitally
to the improvement of normal designs. Directly, it prompts improvements specifically
aimed at avoiding similar failures in the future. In the early 1950s several De Havil-
land Comet 1 aircraft suffered catastrophic structural failure in the air. Pieces of one
of the aircraft were retrieved from the sea bed and the failed structure was reassem-
bled at an aeronautical research centre. This enormously expensive exercise showed
clearly that the failures were due to metal fatigue, and that the corners of the aircraft’s
square passenger windows had provided sites at which the fatigue cracks started to
develop. This is why aircraft windows today are always rounded, avoiding angular
corners. It is important to observe that the lesson learned was not “Engineers must
perform more careful analysis;” nor was it “Engineers must consider metal fatigue,”
or even “Aeronautical engineers must consider metal fatigue.” It was “To minimise
the risk of metal fatigue, aeronautical engineers must avoid local design configura-
tions at which fatigue cracks can easily originate, ensuring, in particular, that aper-
tures in the structure for windows and for passenger and cargo doors have rounded
corners of large radius.”

Less direct, but no less important, is the general role of failures in helping engi-
neers to understand their designs more fully. Every engineering product has an enve-
lope of possible satisfactory operation, the envelope being defined by the interactions
of the many loads imposed on the product externally by the problem world and inter-
nally by its own weight and other properties. Engineers design with safety factors,
whose purpose is to ensure that operation never strays over the boundary of this enve-
lope. These safety factors are sometimes called ‘factors of ignorance’, because the
designer rarely has exact knowledge of the boundaries of the envelope or of the con-
ditions that can obtain in operation. Any failure is important because it identifies a
specific point near but beyond the boundary, and so helps to map the boundary more
exactly. Increased safety factors may then enlarge the envelope to accommodate the
wider range of conditions now known to be possible. Interestingly, Petroski points out
[35] that safety concerns can generate a cyclic pattern. When safety factors have in-
creased and failures become very rare there is a tendency to believe that the products

 The Name and Nature of Software Engineering 17

in question are over-engineered; the safety factors are then progressively reduced until
the incidence of failures eventually increases and the cycle repeats itself with a call
for increased safety.

Engineers design with failure in mind. That is: they consciously consider the con-
sequences of failures. Because their artifacts are physical, failure is eventually inevi-
table; even within the designed life of the artifact unexpected changes in the problem
world can cause failure. A general principle in engineering loaded structures such as
bridges and buildings is that the designer must consider alternate load paths. When
one component fails the load it was carrying will be distributed to other components
of the structure, which should be strong enough to carry the increased load and so
avoid a cascading failure of the whole system.

3.9 Unique and Standard Problem Worlds

Many failures in the established engineering branches are of bridges and large build-
ings. One factor in the difficulty of designing such structures is that their problem
worlds are always unique, at least in some of their given properties. The design of a
large suspension bridge over a river must be closely tailored to the particular proper-
ties of the terrain in which the towers and the cable anchorages will be embedded, to
the water flow around the towers, to the navigation traffic in the river, to the ambient
weather and winds, and to the characteristics of the traffic to be borne by the bridge.
The structural design of a building must take account of the ground on which its
foundations will rest, any restrictions imposed by surrounding buildings, vibrations
caused by nearby road or rail traffic, and the impact of the local weather and winds.

Because their problem worlds are unique, such artifacts themselves are also at least
partly radical in design. The Tacoma Narrows bridge has already been mentioned.
Another example is the roof of the Hartford Civic Center Arena, which collapsed [25]
under the weight of a heavy snowfall in 1978. The two-and-a-half acre roof was sup-
ported by a novel space-frame made possible only by the adoption of recently avail-
able computer software to calculate the stresses involved. Lack of experience with the
new technique led to two sources of error in the design. First, the calculations of stress
at the outer boundaries of the space frame, where the failure originated in the buckling
of a horizontal component, were inadequate. Second, the construction company found
it impossible to fabricate the frame on site exactly as designed. Some of the compo-
nents whose centre lines should have met at a point were in fact slightly offset; the
consequences of this apparently small deviation from the design were not calculated
until after the collapse, when they were found to be large.

Unique problem worlds and radical artifacts are two sides of the same coin: they
introduce into the design problem factors of which the designers have too little ex-
perience. It is not surprising that catastrophic failures are much rarer in normally
designed artifacts operating in standard problem worlds. This is true particularly of
products, such as cars and aeroplanes, that are manufactured in large numbers of
many different variants of many different designs. For the engineering of such prod-
ucts the problem world is, to a considerable extent, standardised, and its properties
have been systematically codified over many years. For example, the driver and pas-
sengers are parts of the problem world for a motor car. Their physical properties—
weight, strength, resilience, resistance to crushing, physical dimensions, dexterity in

18 M. Jackson

operating the controls—are sufficiently standard for crash testing to be carried out
using standard dummies, and for the requirements for a car’s seating and driving
position and controls, and the sizes of doors, to be largely standardised. The design of
motor cars is based also on standard assumptions about the surfacing and configura-
tion of roads, about the available fuel, and about the earth’s atmosphere close to its
surface. For the working engineer, these standard assumptions become almost uncon-
scious, demanding at most occasional reference to tables in a handbook. For the ordi-
nary lay observer the highly evolved adaptation of the artifact to its standard problem
world becomes almost invisible. Sumo wrestlers and professional basketball players
see it more clearly.

4 Some Tentative Comparisons

The foundation of success in the established engineering branches, as it has been de-
scribed in the preceding section, is normal design; and the foundation of normal design
is specialisation. Specialisation stimulates the increase of knowledge in many dimen-
sions and in many overlapping areas from the most theoretical to the most empirical. It
encourages the growth of communities by whom knowledge is preserved and in-
creased, and of intellectual and social structures within which knowledge gained is
codified and becomes an immediately available resource for working engineers. Spe-
cialisation and normal design are therefore fundamental topics for comparison with the
practices of software engineering.

4.1 Specialisation in Software Engineering

Several attempts have been made in recent years to establish a taxonomy of topics in
software engineering expertise. For example, the IEEE Guide to the Software Engi-
neering Body of Knowledge [44] lists ten knowledge areas:

 Software requirements; Software design; Software construction; Software
testing; Software maintenance; Software configuration management; Soft-
ware engineering management; Software engineering process; Software engi-
neering tools and methods; and Software quality.

Each knowledge area is broken down into several subareas. For example, the Software
design are is broken down into: Software design fundamentals; Key issues in software
design; Software structure and architecture; Software design quality analysis and
evaluation; Software design notations; and Software design strategies and methods.

In a similar vein, Capers Jones, in an article on software specialisation [21], lists
the specialisations his consulting company had found in organisations of every size.
The organisations surveyed ranged from very small, with fewer than 10 software
staff, to very large, with as many as 40,000 software staff. The list was:

 Architecture, Configuration control, Cost estimating, Customer support, Data-
base administration, Education and training, Function point counting, Human
factors, Information systems, Integration, Maintenance and enhancement,
Measurement (productivity, quality, etc), Network (local, wide area), Package
acquisition, Performance, Planning, Process improvement, Quality assurance,

 The Name and Nature of Software Engineering 19

Requirements, Reusability, Standards, Systems software support, Technical
writing, Technology (object-oriented, GUI, etc), Testing, Tool development.

The SWEBOK topics, and the specialisations listed here by Capers Jones, lay their
emphasis on the general processes of software development rather than on the specif-
ics of its products. While these general processes are of obvious importance, they can
play at most a supporting role to the kinds of specialisation that are basic to the estab-
lished engineering branches and that nourish the evolution of normal design.

For successful engineering, the essential specialisations are product specialisations.
They are fundamental because the end products of engineering are its specific arti-
facts and the artifacts that they embody as components at every level. The object of
normal design is a class of engineering artifact. Aeroplanes, for example, are devel-
oped by practitioners of many interacting specialisations from the most theoretical to
the most practical; but above all they are the product of engine designers, undercar-
riage designers, fuselage designers, wing designers, and, of course, aeroplane design-
ers. There is no substitute for this kind of specialisation by artifact, because it brings
together in one place the totality of the experience that the product will eventually
provide. Of course, the end product of one engineering specialisation may be a com-
ponent in the end product of another, so the notion of ‘end product’ is somewhat rela-
tive; but this relativity does not blur the edge of the specialist engineer’s responsibility
for the performance and quality of the delivered artifact.

A more relevant example of specialisation in software engineering is therefore the
construction of compilers, which became a commercial specialisation at the beginning
of the 1960s. At that time, when computer instruction sets and architectures varied
between manufacturers, and between different models from the same manufacturer,
companies such as CSC and Digitek undertook to build Fortran and other compilers
that manufacturers could supply without charge to customers who bought or rented
their extremely expensive hardware. Specialisation in compiler construction has con-
tinued to grow, along with important advances in knowledge of grammar theory,
programming languages, parsing, and optimisation, and in practical developments of
tools such as parser generators. It has also branched out into the more ambitious field
of integrated development environments. Other examples of successful product spe-
cialisation in software engineering include relational DBMSs, file systems, SAT solvers,
web page builders, operating systems, GUI builders and web browsers.

4.2 ‘System’ and ‘Application’ Software Products

A high proportion of the most successfully specialised products of software engineer-
ing are of classes that are commonly used by software developers, or otherwise famil-
iar or accessible to them. They include the tools of the software development trade,
such as compilers, interpreters, version management systems, editors, word processors
and GUI builders, and the components of the computing infrastructure, such as operat-
ing systems, file systems, DBMSs, router software and web browsers. They also include
some products, such as spreadsheets, that solve symbolic problems: their problem
worlds are easily understood by a software developer, and are uncomplicated by the
buzzing blooming confusion of the physical and human world. I shall characterise
these as system software products, contrasting them with the application software

20 M. Jackson

products that compose systems in such areas as avionics, administration, business,
telephony, smart home systems, banking, e-commerce, process control, medical ther-
apy and manufacturing. Of course, this distinction between system and application
artifacts is very rough and ready. Not all system software artifacts are the product of
successful specialisation, and not all application artifacts exhibit the defects of a lack of
normal design: ATMS, for example, can be expected to work reliably and well. But the
broad distinction stands up well in the light of the evidence of system failures reported
in The Risks Digest [39]. For most application artifacts and systems, dependability has
been hard to achieve. It is here that the relative lack of evolving specialisations in soft-
ware-intensive systems, and hence of normal design and normal design practice, has
had its harmful effect.

At first sight it might be thought that many, or even most, of these application soft-
ware-intensive systems—especially in socio-technical applications where human
participants form a dominant part of the problem world—should be relatively unde-
manding. They rarely pose design challenges as intricate, complex or critical as the
generation of highly optimised code in a compiler, or the correct management of
transactions in a heavily loaded DBMS. In many systems, much of the functionality is
associated with interaction with human participants in their roles as operators, users
or sources of information: this interaction, surely, must be simple enough for the hu-
man participant, and cannot therefore pose significant problems of understanding for
the software developer. It seems reasonable to expect that an effective approach to
such systems can be based on the application of universal software engineering prin-
ciples. There is no need for specialisation or normal design. Sound application of a
well-understood general development method, in a disciplined environment, will be
enough.

This optimistic approach may be effective for some software-intensive systems;
but it pays too little attention to the sources of difficulties and obstacles that applica-
tion systems often present. One source of difficulty has already been discussed in an
earlier section. Because of the non-formal nature of the problem world, including its
human parts, any formalisation is at best imperfectly reliable. The task of choosing a
good enough formalisation, and designing the treatment of any residual deviations
from it, demands specific experience-based knowledge of the system class and of its
problem world: it cannot be adequately addressed on the basis of general principles
alone. Another source of difficulty is the need for a highly evolved design, which
cannot be achieved by sporadic attention from generalists: it demands specialised
effort over a considerable time. And yet another source of difficulty is the increas-
ingly multifarious nature of software-intensive systems: a typical system comprises
many heterogeneous functions and features whose interactions can potentially give
rise to complexity that grows exponentially with the number of functions.

Two of these sources of difficulty—non-formality and feature richness—need im-
pose no great design burden in a system amply equipped with human overrides.
Wherever the problem world behaviour goes outside the bounds of what the develop-
ers have anticipated, a human override—for example, a corrective credit or debit
applied to a bank account at the manager’s discretion, or an operator’s overriding
intervention in a process control system—can avoid failure and restore an appropriate
system state and behaviour. Unfortunately, the availability of such human overrides
militates against the economically attractive goal of increasing automation, and for

 The Name and Nature of Software Engineering 21

that reason they become less attractive in the more ambitious systems where the need
for them is greater. To make such systems dependable lays a heavy responsibility on
the investigation and analysis of the assumed problem world properties on which the
machine will rely to satisfy the requirement. Wherever the world fails to conform to
the assumptions, the machine’s behaviour will be defective, admitting no possibility
of human intervention to rescue the system from failure. The most dramatic illustra-
tion of the point is an old one. On 5th October 1960 the US Ballistic Missile Early
Warning System indicated that a major missile attack by the Soviet Union was in
progress. No counter-attack was launched, however, because the system was not fully
automated: an urgently convened meeting of senior military experts judged for quite
extraneous reasons—Khruschev was in New York at the time, and US-Soviet rela-
tions were not unusually tense—that the indication was faulty. In fact, the rising moon
had caused the system’s radar signals to be reflected in a way that the designers had
not anticipated [2]. The human override avoided a disastrous war.

4.3 Radical Design in Software-Intensive Systems

The relative lack of product-oriented and component-oriented specialisations in soft-
ware-intensive systems has had its inevitable result: too much development is essen-
tially radical design. Certainly many individuals, and some organisations too, have
accumulated substantial experience in particular areas, but this distributed experience
is not an adequate infrastructure for the evolution of normal design. In the absence of
specialised communities and their mechanisms for collating, recording and distribut-
ing design knowledge, the expertise of individuals is likely to be dissipated and lost.
The clearest evidence of lack of specialisation can be seen in the literature on almost
any aspect of software development in application software-intensive systems: discus-
sion is conducted on a general level, seemingly on the assumption that the differences
between one class of system and another are unimportant for the purpose in hand.

Radical design, of course, is not absent in the established engineering branches.
Vincenti points out [45] that:

“Design, apart from being normal or radical, is also multilevel and hierarchical.
Interacting levels of design exist, depending on the nature of the immediate
design task, the identity of some component of the device, or the engineering
discipline required. ... Whether design at a given location in the hierarchy is
normal or radical is a separate matter—normal design can (and usually does)
prevail throughout, though radical design can be encountered at any level.”

In software engineering, too, there is an intermixture of normal and radical design, but
unfortunately it cannot be said that normal design usually prevails throughout. The
engineering of a software-intensive system too often has an excessive ingredient of
radical design at every level. Much of this is not recognised to be radical design: the
design task seems too simple and straightforward to demand the codified knowledge
and constrained development of a normal design discipline. But just as it is easy to
write an incorrect small program for an operation on a linked list, so it is also easy to
fail by making inappropriate assumptions about the problem world of a small compo-
nent in a software-intensive system, or about the behaviours and interactions of the
many parts of an apparently simple software-intensive system.

22 M. Jackson

At the level of the complete system, the lack of normal design can make it hard to
know what is possible, or to know what technical and other resources will be needed.
There is a long catalogue of failed projects, often projects proposed by governments,
whose overall requirements eventually proved to be far beyond the achievable range
of existing design practice. A notorious example is the US Government’s proposals
for the Strategic Defense Initiative, put forward in the early 1980s. David Parnas
resigned from the Panel on Computing in Support of Battle Management, convened
by the SDI Organization, and published his reasons in [31], where he explained “the
properties of the proposed SDI software that make it unattainable.” A major part of
his argument rested on the complex unpredictability of the non-formal problem world
of missiles, decoys, sensors, weapons and targets; another part rested on the sheer
unprecedented scale of the proposed system.

The technical difficulty of finding good enough formalisations for the problem
world is found also in apparently simpler environments with comparatively low levels
of technology. The currently planned system for the UK National Health Service,
intended to computerise records and care administration for 50 million patients at a
cost currently estimated at £12.4 billion, seems unlikely to deliver its intended bene-
fits. According to Brian Randell and his colleagues [38], the apparent mistakes in-
clude excessive centralisation of system function and the letting of huge procurement
contracts for inadequately specified deliverables. These mistakes are recognisable
from general principles alone; but there is also a large failure to address the socio-
technical issues. These are essentially concerns about the problem world, including
the possible and expected behaviour of people interacting with the system as patients,
doctors and administrators. The design of the system with respect to these interactions
has evidently been radical: the designer had no presumption of success. The result is
that many interactions are troublesome, leading to users’ efforts to circumvent de-
signed system constraints, with the consequence that design assumptions about sys-
tem data are invalidated. For example, staff in some hospital departments circumvent
security controls because they are too cumbersome and obstruct timely response to
medical emergencies: the design goal of traceable responsibility for patient treatment
is entirely frustrated. General medical practitioners circumvent the procedure for
referring patients to specialised consultants because the procedure assumes that a
specific diagnosis is already known, which is often not the case. In a highly connected
system, local failures like these are likely to combine to produce failures on a larger
scale and even to bring the whole system close to inoperability.

4.4 Mitigations for Radical Design

Much of the substance of software engineering discourse, and of the approaches and
methods proposed for development, can be regarded as efforts, in more than one di-
mension, to mitigate the effects of radical design, working towards a reasonable prod-
uct in spite of the absence of directly relevant normal design.

One dimension of effort, focusing on the form of the development process, has
classic representatives at its two opposite poles. The waterfall process is implicitly
based on the belief that careful and systematic thought can compensate for lack of
experience. Development proceeds, phase by phase, from establishing system re-
quirements to software design, coding, testing and deployment. In a pure waterfall

 The Name and Nature of Software Engineering 23

process there is some iteration, in which the output of one phase can be revisited and
modified when a defect is revealed in a later phase; but the broad scheme is to work
towards a single delivery of a complete product. At the opposite pole are the agile
processes. Development starts with a very vague and brief statement of some part of
the system requirement; a very partial product is built and put it into operation, and
the results are evaluated. The next increment of functionality is then selected, and the
process repeated iteratively, the developers being willing at each iteration to modify
and even restructure what has already been built and installed. Agile processes are
explicitly based on the belief that lack of experience should be compensated for by
experiment and feedback rather than by deeper investigation and greater care and
precision in initial design. It could be said that such agile approaches echo the travails
of pioneering inventors.

Another dimension of effort is structural, focusing on the structure of the system
and of the problem it is intended to solve. One approach, much used in object-oriented
software development [29], is to identify classes of entities in the problem world and to
associate a software object class with each one, the object instances providing a kind of
simulation, or surrogate, for the individual problem world entities. Further behaviour
and further object classes can then be added to provide additional system functionality.
Conceptually, this approach has much in common with JSD [19] in which problem
world entities in an information system are associated with software processes, and
further behaviour and further processes are added to provide the system’s desired in-
formation outputs. Another architectural approach, KAOS [6], is very different. It relates
system functionality to requirements or goals that are formally decomposed. Responsi-
bility for achieving each goal is eventually assigned to one or more agents, the agents
being either parts of the software or parts of the problem world.

A central question in structural approaches to development is the relationship be-
tween the structure of the problem—that is, of the requirement and problem world—
and the structure of the software. Sometimes the gross software structure is inescapa-
bly determined by the machine environment. The most obvious example of structural
determination is the Three-Layer Architecture, which structures a client-server appli-
cation into a Presentation Layer running in the client computer, an Application Layer
running in the server, and a Data Layer provided by the server’s installed DBMS. More
often there is a freer choice of software structure, and the choice may be made at a
gross level by selecting an architectural style [34, 41]. The designer selects a style,
and must then allocate the functionality of the system to software components of that
style. When a uniform style is chosen in this way, in which each component conforms
to the same general type constraints—for example, each component is a passive ob-
ject, a filter, or a procedure—the technical task of fitting the components together is
greatly simplified; but the task of fitting the functionality into the Procrustean bed of
the component type is likely to be difficult. An interesting discussion of these difficul-
ties in the design of the software for an oscilloscope is given in [7], and further gen-
eral discussion in [41].

4.5 A Problem-Oriented Approach to Structure

Decomposition and structuring of system functionality is an essential tool in mitigat-
ing the effects of radical design. Functional decomposition means decomposition of

24 M. Jackson

the problem to be solved by the system as a whole, and this problem is firmly located
in the problem world. It is therefore appropriate to regard components of system func-
tionality as subsystems—or subproblems, in the sense that each component conforms
to the problem diagram of Figure 1.

This approach is based on the notion of problem frames [20] that has already been
mentioned; it is illustrated by fragments of a simple example discussed in the follow-
ing sections. The purpose of the discussion is not to propose or advocate a design
method, nor to illustrate novel or recommended solutions to significant design prob-
lems. It is to reveal some of the concerns that arise in understanding the overall design
problem, in identifying an appropriate set of system components, in designing the
functionality of each component, and in configuring and connecting the components
to achieve the overall functionality of the system. The example is intended only as a
stimulus to thought, not as a serious depiction of a realistic system.

The characteristic of this approach that makes it suitable to the central theme of the
paper is that it makes the relationship between the problem, the problem world, and
the machine functionality fully explicit in a very direct way. The parts, or domains, of
the problem world with which the component machines interact in providing each
part or aspect of its functionality are explicitly shown in their problem diagrams. Such
components can perhaps offer a basis for specialised normal design focused on the
design artifact. The possibility of implementing each subproblem machine as a soft-
ware module of the whole machine is not excluded, but neither is it assumed: a sub-
problem machine may be only a projection of the implemented whole machine. The
primary purpose of the approach, as its name suggests, is to permit analysis and un-
derstanding of the development problem: the eventually implemented machine will be
the solution: this perspective is adopted at every level of the design hierarchy.

A component or subproblem is regarded as having its own machine, its own prob-
lem world, with which it interacts, and its own requirement. The component machine
may be software executed by the same computer as other, perhaps all other, compo-
nent machines, and it may be distributed among several software modules. The com-
ponent problem world may contain problem world parts, or domains, that appear also
in other components’ problem worlds; and some of the shared phenomena by which it
interacts with its problem world may be common to other components.

Each component machine in a software-intensive system interacts with the relevant
parts of the system’s problem world, and is responsible for satisfying its own part of
the system’s requirements. It will also interact with other component machines, both
directly by issuing and responding to control instructions and indirectly by accessing
shared data structures in primary or other storage and by interacting with additional
components introduced specifically for purposes of composing the component ma-
chines. These additional components and shared data structures may be partially or
entirely internal to the undecomposed machine, just as the electrical wiring harness and
the cardan shaft are internal to a car. At the level at which they are the objects of de-
sign, their problem worlds contain the subproblem components whose interactions they
serve. The design of the whole system, then, comprises not only the identification and
design of the components among which the system functionality is distributed, but also
the explicit design of their interactions as a distinct development concern.

 The Name and Nature of Software Engineering 25

4.6 Problem-Oriented Components: An Example

In a very small system to impose one-way vehicle traffic over a segment of road un-
der repair, the segment is guarded by traffic lights at each end. Sensor tubes fixed to
the road surface at the segment boundaries detect the passage of a vehicle as its
wheels compress each tube in turn. A control computer, connected to the light units
and sensors, is equipped with a small keyboard and a simple character display. These
are used from time to time by the site manager to specify the lengths of the traffic
phases, thus allowing different absolute and relative traffic densities in the two direc-
tions to be accommodated with minimum inconvenience to the road users. Figure 2
shows a tentative problem diagram:

Fig. 2. Problem Diagram: One-Way Traffic Control

The requirement stipulates that the machine, the Traffic Controller, must constrain
the Vehicles to achieve Convenient Safe Traffic in accordance with the Manager’s
most recent specification of phasing. The Vehicles, like aircraft in an air traffic con-
trol system, can be constrained only under the broad assumption that their drivers
obey the light signals. By contrast, the Manager need not and can not be constrained:
the machine can reject or ignore inappropriate keyboard inputs. As in Figure 1, the
solid lines connecting the problem world domains to each other and to the machine
represent interfaces of shared phenomena.

Developers responsible for designing this small system should, to minimise devel-
opment risk, start by looking for an established normal design discipline for the whole
system: not in the expectation of finding a ready-made solution that can be used di-
rectly, avoiding all development cost and greatly reducing uncertainty, but rather of
identifying an established body of specialised design expertise in systems of this kind.
(The question “What do we mean by ‘systems of this kind’?” is, of course, just one
instance of the overall question “What specialisations should exist in software engi-
neering?”) However, the present discussion will proceed on the assumption—possibly
false—that no such overall established normal design is available. The difficulties of
radical design are to be mitigated by identifying some normal design components that
must then be combined within a radical structure.

Since our purpose here is to discuss the nature of components, we will take only
two examples, leaving aside most of the design task. Two candidate components are
immediately obvious. One is a component to handle the Manager’s input of phasing

Convenient
Safe Traffic

Traffic
Controller

Manager

Vehicles

Lights

Sensors

A
Keyboard

Display

26 M. Jackson

specifications: this input process must be decoupled from the process of controlling
the lights according to one of the previously completed specifications. This decoup-
ling, in the usual way, requires the introduction of a data structure. Figure 3 shows the
resulting subproblem diagram for the component whose function is to support editing
of the phase specification:

Fig. 3. Problem Diagram: Editing a Phase Specification

The Phasing problem domain in this component is a part of the Traffic Controller
machine. It is a lexical domain: that is, a data structure made concrete in primary or
other storage of the computer. The stripe on the box indicates that although it appears
as a problem domain, it was not given in the original problem. It is ultimately a part of
the complete machine, and must be designed by the developers.

A second obvious candidate is a component to collect and interpret the information
from the sensors, allowing the Traffic Controller machine to detect whether any vehi-
cle has entered the controlled segment but not yet left it, and thus whether it is safe to
allow traffic flow in the contrary direction. This function too can profitably be de-
coupled from the function of controlling the traffic in accordance with the phases
specified by the Manager and by the Vehicle positions. Once again the natural
mechanism for decoupling these two functions, one producing information and the
other consuming it at a different time or place in the system structure, is a lexical
domain. Figure 4 shows the subproblem diagram:

Fig. 4. Problem Diagram: Building a Vehicles Model

The VModel domain functions as a surrogate or model of the Vehicles domain.
This is not an analytical model expressing general properties of the Vehicles do-
main, but an analogue model in the sense that its state at any time is required to
satisfy a correspondence with the state of the Vehicles domain. This correspon-
dence allows it to be used by the Traffic Controller as a surrogate for the Vehicles:
inspecting the VModel state will provide necessary information about the state of
the Vehicles. In this subproblem only the VModel domain is constrained by the

Specification
Editing

Phasing
Editor

Manager A
Keyboard

Display

Phasing

VModel ∼
Vehicles

Vehicle
Modeller

Vehicles

VModel

Sensors

 The Name and Nature of Software Engineering 27

requirement: the behaviour of the Vehicles is regarded as autonomous. Again, the
model is a designed domain: it was not given in the original problem, and must be
designed by the developers.

4.7 The Content of Normal Design

It was suggested in the preceding section that the Editing Phase Specification and Build-
ing Vehicles Model subproblems are two obvious candidates for components of the
system. They seem to represent ‘natural’ components of the system functionality; they
are simpler than the whole system because their problem worlds are smaller and their
requirements more limited; and they seem to be candidates for normal design, in the
sense that they are examples of two recognisable problem types that are often found in
software-intensive systems. In one, information, provided by human input to one part of
a system, is to be saved in an internal document for later use elsewhere; in the other the
changing state of some dynamic problem domain is to be detected, interpreted, and
captured in a convenient representation to be used to guide system behaviour.

Merely pointing to a roughly recognisable problem type in this way is far from
enough to delimit a class of normal design objects (Vincenti would call them ‘de-
vices’), let alone to provide the substantive content by which the engineer “knows at
the outset how the device in question works, what are its customary features, and that,
if properly designed along such lines, it has a good likelihood of accomplishing the
desired task.” That can be achieved only by the long evolution that characterises nor-
mal design in the established engineering branches. However, we can say something
here about the natures of the two devices we have identified and about the concerns
that will arise in their design.

At a superficial level, a more abstract view might suggest that the two subproblems
we have identified belong to the same class because they exhibit the same structure.
Each has a lexical domain (the Phasing or the VModel), to be created or maintained
by the machine; an autonomous domain (the Manager or the Vehicles), that is the
source of change; some parts (Keyboard and Display, or Sensors) connecting the
autonomous domain to the machine; and a requirement that some specified relation-
ship should hold between the lexical and autonomous domains. However, such ab-
straction and assimilation can seem persuasive only for the earliest incunabula of an
engineering branch, whose designers must rely heavily on native wit informed by
general principles. Assimilating the two problems misses the central point of normal
design evolution, which lies in refining, mastering and exploiting the given and poten-
tial particularities of the device class in question, its desired function, and its problem
world. Both early railway locomotives and early motor cars were sometimes con-
ceived as a new kind of horse-drawn carriage; but as soon as normal design began to
evolve from the initial radical attempts it became apparent that the problems and the
desirable solutions were very different.

The two components we have identified differ greatly in the fundamental natures
of their positive requirements. The purpose of the editing component is to provide a
tool for human use. It must support the Manager’s need to capture, and express in the
designed representation, the intended pattern of traffic phases: the result must con-
form to certain syntactic and semantic constraints, and must accurately represent the
Manager’s intention. The purpose of the model-building component is to maintain a
specified correspondence between the given autonomous domain of the Vehicles and

28 M. Jackson

the designed model domain: the resulting model must be continually updated to
reflect the changing states of the Vehicles domain. These different purposes might
suggest different principles of operation for the devices to achieve their positive re-
quirements. For example, the display might be exploited to support an interactive
style of question-and-answer input for the editing component: there is no equivalent
for the model-building component.

4.8 Failures in Component Design

The negative requirements, to avoid predictable failures, also differ fundamentally
between the two components. Design of the editing component must avoid failures in
ease and convenience of the editing activity. This falls in the area of human-computer
interaction (HCI) and has been extensively studied in general, and in some particular
contexts for particular tasks and classes of user. Vincenti describes [45] an illuminat-
ing example in aeronautical engineering. Early pilots often described particular air-
craft as ‘stiff’ or ‘responsive’, or ‘easy to fly’, or ‘hard to fly’. In the twenty five years
from 1918 to 1943 these ill-defined notions were studied by aeronautical engineers
with increasing intensity. Eventually the chief characteristics determining ‘flying
quality’ were identified and quantified. For example, a crucial parameter in longitudi-
nal control was shown to be ‘stick force per g’: that is, how much force the pilot must
exert on the stick to produce a given longitudinal acceleration by moving the elevators
to raise or lower the nose of the aircraft. More recently the vital importance of human
factors has been recognised in the design of avionics and process control software:
‘operator error’ and ‘pilot error’ are more often an indictment of the system designers
than of the unfortunate operator or pilot. The human factor concerns of editing pro-
grams, such as our little example, have also received some attention, although perhaps
the results here are comparatively meagre.

Another negative requirement for the editing component, again associated with
human factors, is to avoid misleading the user: it is a major failure if the phasing
specification captured in the lexical domain is not exactly what the Manager believes
has been specified. This apparently obvious class of failure was dramatically illus-
trated in a major contributory cause of the patient deaths and injuries caused by the
Therac-25 radiotherapy system [23] in the period from 1985 to 1987. The parameters
of the radiation dose to be delivered were entered by the operator on a keyboard and
displayed on a character-based screen under the control of a data entry and editing
routine. The software design and implementation made it possible for the operator to
exit from the routine and activate delivery of the dose while under a misapprehension
about the parameter values that had been set: the screen display did not correspond to
the values set in the physical equipment.

The chief negative requirement for the model-building component is avoiding fail-
ure to satisfy the positive requirement to a sufficient degree: that is, to reduce to an
acceptable level the probability of system states in which the VModel fails to reflect
the reality of the Vehicles and their positions. Depending on the kinds of road in which
the system may be installed and used, the real vehicles may be of many shapes and
sizes, with different numbers of axles. Sensors of the kind used can be activated by
many other causes than the passage of a vehicle; also, the pattern of sensor state
changes caused by a vehicle may depend on factors that are hard to predict, such as the
exact position and orientation of the vehicle in the road. For a sufficiently dependable

 The Name and Nature of Software Engineering 29

system it is necessary to achieve good enough reliability in the interpretation of sensor
changes, and also to understand the limits of that reliability in designing the use to be
made of the resulting model domain.

This challenge in a model-building component reflects a general difficulty, in
matching the engineering artifact to the problem world, that is not typical in the estab-
lished branches. The behaviour of a programmed machine is determined—up to
hardware and infrastructure malfunction—by the application software. The software
is designed, formally or informally, on the basis of some analytical model of the prob-
lem world devised or adopted by the developers. Here, for example, interpretation of
sensor state changes is based on some analytical model of the Vehicles and their pos-
sible properties and behaviours. If this analytical model is inadequate, the machine,
limited by its program and by the alphabet of its interface to the problem world, can-
not compensate for the inadequacy. By contrast, an inadequate analytical model of the
problem world in the design of a physical structure can be compensated by the stan-
dard engineering practice of applying safety factors in the design. In software engi-
neering, failures in analytical modelling of the problem world are more likely to result
in system failures. Avoiding system failure by adopting a good enough analytical
model is an essential part of normal design.

4.9 Composition in Software Engineering

It is a commonplace of software development, both in rhetoric and practice, that com-
plexity must be mastered by separation of concerns. However, since the separated
concerns belong to a single project, they must somehow be composed and brought
together again to constitute the desired whole. In general, composition is a substantial
design challenge in itself. Obviously, there is the need to connect the components so
that they can work together. For example, the part of the Traffic Controller that con-
trols the lights must be given access to the information about Vehicle states captured
in the VModel domain, and also to the Phasing specified by the Manager. Making the
model domain available is a classic composition of access to a shared data structure,
and demands use of a standard software mechanism for guaranteeing mutual exclu-
sion between writer and reader at an appropriate granularity. The use of a standard
mechanism is an element of thoroughly normal design practice.

Making the Phasing available to the Traffic Controller is a more substantial com-
position problem. First, it seems clear that use of a single shared data structure,
even with mutually exclusive access, will not be satisfactory. The controller must
always refer to a fully coherent phasing specification, in which the different phases
are in the correct relationships of ordering and duration, when altering the light
settings. Allowing a finer granularity—for example, allowing read access whenever
the Phasing is syntactically correct—would gratuitously introduce a class of poten-
tial failures whose avoidance would be complicated and difficult. The finest practi-
cable granularity for mutual exclusion is therefore a complete phasing specification.
Since the editing process cannot proceed faster than the Manager allows it to, the
time between one fully coherent specification and the next, during the whole
of which the light settings must remain unchanged, is potentially unbounded. So
the editing process must operate on a different instance of the Phasing data struc-
ture from the instance currently being used for control. The design questions then

30 M. Jackson

arise: How and when will the changeover be made? Will there be two instances or
more—or perhaps a database of instances?

The design of the changeover from one Phasing instance to another raises an aspect
of composition design which appears in many guises in different contexts: we may
call it the switching concern. In the present problem, control of the traffic lights must
be switched from one specified phasing to another: the design problem is to arrange
that the concatenation of the two phasings does not infringe some—possibly im-
plicit—global requirement. Here, one such requirement is that any phase in which
traffic has been allowed to flow in one direction is followed by a phase which pre-
vents further vehicles from entering the controlled segment for long enough to allow
the segment to become clear of traffic. Another global requirement may be that the
two directions of traffic flow must alternate. Another example of a switching concern
in a very different problem is the treatment of customers in a financial system. Ac-
counts are normally managed according to some set of rules, but a different set of
rules is applied to delinquent customers who default on loan repayments. Transferring
a customer between the normal and the delinquent rules is a switching concern.

4.10 Designing for Failure

In general, composition design can raise many concerns. The composition of two
simple components may be far from simple, and may offer many opportunities for
failure. One lesson from the established branches is that component failure must be
anticipated, and the designer must consider consciously how the system will behave
when it happens. In particular, composition must respect the relative criticality of
components, in the sense that the functionality of a more critical component must not
be vulnerable to failure of a less critical component.

One example will suffice. A system to control a proton therapy machine may have
components to set dosage, contour and direction according to the patient’s prescrip-
tion, to control the proton beam, to move the patient support bed, to rotate the gantry
that positions the proton beam, to maintain an audit trail of commands sent to the
equipment, to respond to the emergency button by switching off the beam, and so on.
The relative importance of these functions demands careful consideration, and must
be a major determining factor in implementation design. In one version of the soft-
ware design for a certain system, dataflow among the corresponding software mod-
ules was arranged as shown in Figure 5:

Fig. 5. Dataflow in a Proton Therapy Machine’s Software

Equipment Log Commands
to Disk

Send to
Equipment

Emergency
Function

Gantry
Rotation

Beam
Control

Operator

Disk Drive

 The Name and Nature of Software Engineering 31

The dataflow shown was chosen because the Log Commands module must log all
commands sent to the equipment, including commands to switch off the beam in
emergency. Unfortunately, the Log Commands module could fail if the disk were full:
if it failed it neither sent the command to the Equipment nor responded to the compo-
nent that had sent the command. The consequence was that running out of disk space
made it impossible to switch off the beam in an emergency. The design error that
concerns us here is not the inadequate design for the Log Commands module. It is the
composition of the Emergency Function and Log Commands modules in an arrange-
ment that allowed the Log Commands module to put the emergency button at risk.

4.11 Normal and Radical Composition

Normal and radical design differ fundamentally in the designer’s approach to compo-
sition. In a normal design task the engineer knows at the outset not only what the
components should be and how each should be designed, but also how they will work
together, and how their composition should be implemented. To a large extent, the
component interfaces necessary for satisfactory composition are already built into the
standard component designs.

At the outset of a radical design, by contrast, the engineer does not know what the
components will be, nor how they should be designed. At that early stage, when rela-
tively little is known about the components, it is too risky to fix the design of the
compositions. This is the fundamental difficulty in trying to apply top-down or re-
finement techniques in the context of radical design: the designer’s task is to design
the composition while simultaneously deciding what the components should be that
are to be composed. A separation of concerns is needed, between the choice and de-
sign of the components, and the choice and design of their composition. The extent to
which the component requirements and designs should be worked out in detail before
their composition is considered will depend on many factors. The properties of a
component that is itself an object of normal design can be anticipated with some con-
fidence, so its design need not be carried very far before its composition with other
components can be considered. A novel component should be considered in some
depth and detail before its composition is considered. The penalty of component de-
sign rework to fit the designed composition is a price worth paying: it is likely to be
smaller than the penalty of prematurely fixing the composition of components whose
requirements and properties are at best only dimly perceived.

Richard Feynman, at the Challenger disaster review panel [10], made these obser-
vations about top-down and bottom-up design in the context of large NASA projects,
in which the dominant design mode was inevitably radical:

“In bottom-up design, the components of a system are designed, tested, and if
necessary modified before the design of the entire system has been set in
concrete. In the top-down mode (invented by the military), the whole system
is designed at once, but without resolving the many questions and conflicts
that are normally ironed out in a bottom-up design. The whole system is then
built before there is time for testing of components. The deficient and
incompatible components must then be located (often a difficult problem in
itself), redesigned, and rebuilt—an expensive and uncertain procedure. ...
Until the foolishness of top-down design has been dropped in a fit of common

32 M. Jackson

sense, the harrowing succession of flawed designs will continue to appear in
high-tech, high-cost public projects.”

The practice of designing the composition in terms of a chosen software architec-
tural style does not overcome this difficulty: rather, it aggravates it in two ways. First,
it focuses the designer’s attention on the mechanics of the composition instead of on
its content; second, it forces premature design decisions in such matters as the locus
of control in component communication. As Shaw and Garlan showed in an account,
cited previously, of software design for an oscilloscope [41], early choice of an archi-
tectural style in a radical design context is likely to be little more than a barely sup-
ported conjecture.

4.12 Radical Requirements and Specifications

A significant benefit of normal design is that the tacit assumptions built into the stan-
dard artifact carry much of the burden of requirements and specifications: in an ex-
treme case the specification may consist of no more than a few chosen options and
parameter values. In radical design, evidently, this is not possible.

A natural reaction to this difficulty is to insist that the more radical the design task
the more completely detailed should be the requirements and specifications. Unfortu-
nately, the considerations that make pure top-down design impractical in a radical
context conspire also to make the notion of complete requirements or specifications
equally impractical. Of course, it is often necessary to pay careful attention to some
particular properties of the eventual product, and it may be possible to state these
properties precisely at the outset of the development project. For example, in a tele-
communications system to be used by paying subscribers one such property is that
subscribers should never be charged for a service that they have not themselves re-
quested either in their subscription choices or during an episode of using the system.
In an electronic purse system an essential property is that money must be conserved:
the sum of the contents of two electronic purses engaged in a transfer must remain
constant over the whole interaction even if the transfer is aborted. However, stating a
set of necessary properties—even a large set—is a far cry from stating a necessary
and sufficient requirement which ensures the adequacy of any system that satisfies
the requirement and the inadequacy of any that does not.

In a realistic radically designed system there will usually be a number of compo-
nents that are objects of normal design. Their requirements may be specifiable by
appealing silently to the tacit part embodied in the normal design; and if the engineer-
ing of a new instance of a normal component involves relatively few design choices,
it may be possible to give a formal and complete specification of the component ma-
chine’s behaviour at its interface with the problem world. However, the whole system
will still admit only a partial, incomplete specification. Satisfaction of this specifica-
tion may be necessary for acceptability, but will never be sufficient.

4.13 Empirical Studies

Empirical methods, in the sense of systematic experiment or systematic examination
of a population of existing cases, have played a fundamental role in the development
of the established engineering branches. The experiments of engineers are different

 The Name and Nature of Software Engineering 33

from those of natural scientists. Natural scientists seek truths that hold for the whole
of nature. Inevitably these truths, and the search for them, must abstract from the
accidental characteristics of particular situations and particular physical arrangements.
Engineers, by contrast, seek to judge between different particular situations and par-
ticular physical arrangements, in order to learn how to devise the most effective de-
signs for particular purposes. In these engineering studies, science plays an important
role. The long process of overcoming steam boiler explosions in the nineteenth cen-
tury [24] depended crucially on the availability and development of scientific knowl-
edge about the phenomenon of heat; but the goal of the engineers was to discover how
to design reliable high-pressure steam boilers. (Ironically, as Leveson points out, in
the United States the knowledge gained was for some time applied only to boilers in
steamboats: stationary and locomotive engines, which had not yet attracted the atten-
tion of legislators, continued to suffer explosions for several years. Specialisation can
be excessive as well as insufficient, both in legislation and in engineering.)

Normal design is a precondition of effective empirical studies in engineering. The
ideal context of experiment is the existence of a normal design discipline within
which the optimal value sets for some particular choices and parameters are not yet
adequately understood. The experiments, mentioned earlier in this paper, on flush
riveting and on the efficiency of different propeller designs, were aimed at advancing
two clearly defined areas of normal design by varying the values of a very small
number of design parameters. The experimental results applied, and were intended to
apply, to the normal design context in which they are obtained. Any wider applicabil-
ity would be an unsought benefit, and would certainly demand separate confirmation
in additional experiments.

Even within a normal design discipline, empirical methods have dangers when cur-
rent theoretical understanding is insufficient to explain the results obtained. Vincenti,
in one of his case studies [45], discusses the “Davis Wing”, a novel design that pro-
voked some controversy among aeronautical engineers in the late 1930s. The design
seemed, on the basis of wind-tunnel experiments, to offer improved performance; but
this improvement was unexplained by aerodynamic theory or orthodox design practice
of the time. The Davis design was successfully adopted in the prototype Consolidated
Model 31 and in the same company’s B-24, which was one of the most important air-
craft of the Second World War, but in no other major aircraft. Vincenti’s summary
comments on the whole episode are revealing. He acknowledges that the Model 31 and
B-24 performed excellently for their day, but “no one can say for certain how the air-
planes would have performed with a different airfoil. ... Perhaps we could call this
decade the adolescence of airfoil technology.”

Applied outside a normal design context, empirical methods are more vulnerable to
two dangers. First, the range of applicability of their results may be ill defined. Aero-
nautical engineers could use the results of Durand and Lesley’s propeller experiments
with high confidence only because they knew they were developing propeller designs
in the same normal design class that the experimenters had assumed. Second, a substi-
tute for a missing scientific theory can, to some degree and for some engineering
purposes, be provided by the constrained and conscious variation of parameters
within a successful normal design discipline. If both scientific theory and normal
design discipline are missing, empirical investigators can have no plausible basis for
identifying the parameters to be varied, and for interpreting the empirical data that

34 M. Jackson

eventually emerge. In software engineering, regrettably, the tightly constrained envi-
ronment of normally designed artifacts and normal design practice is seldom avail-
able. Empirical investigations must often suffer accordingly.

5 Concluding Reflections

The phrase software engineering was originally coined with provocative intent, and in
that respect it has certainly succeeded. A number of eminent computer scientists have
responded to the provocation by refining, expounding and teaching their ideas about
the relationship between the established branches of engineering and the discipline of
software development as it is, or as it should be. The ideas of Parnas are to be found in
the many papers he has written over a long career, a notable brief summary being [33].
Maibaum has approached the matter from a more formal point of view [14, 26, 27],
stressing particularly the dependence of software on logical and scientific foundations.

In this paper I have adopted a different approach, focusing rather on the structure of
engineering practice, stressing similarities and analogies between software engineering
and the established engineering branches. I have tried to identify critical respects in
which I believe we have much to learn from their long history of specialisation and
from the normal design artifacts and practices that are its fruit. System software, be-
longing to the toolset or the infrastructure of software development itself, exhibits
many examples of successful specialisation. There is evidence of specialisation also in
the work on object-oriented patterns [11]. The deficit of software specialisation and of
normal design is found chiefly in what I have called application systems—software-
intensive systems whose purposes are firmly located in their physical and human prob-
lem worlds.

The relatively high incidence of failure is one very direct symptom of this lack of
specialisation. Another important symptom, visible almost everywhere in the software
engineering landscape, is a reluctance in the education, research and social contexts to
engage deeply with particular concrete instances. We seem to prefer to occupy our-
selves with concerns at a more general or abstract level. This preference militates
strongly against the development of specialisations and against the increase of the
knowledge of specifics and particulars that characterises the established engineering
branches. The most cursory inspection of educational syllabuses and journals of
research and development in the established branches shows a heavy emphasis on
particular examples of engineering artifacts and their properties. For example, the
Earthquake Engineering Research Center of UC Berkeley maintains a library [12] of
nearly 1000 slides showing examples of real structural systems such as bridges and
large buildings of many kinds. The purpose of the collection, originally made by Pro-
fessor William G Godden between 1950 and 1980, and since then enlarged and en-
hanced, was to serve as a teaching resource for undergraduate and graduate courses.
Students would learn not only by acquiring knowledge of theory, but also by in-
formed examination of specific real engineering examples: each example has its place
in a rich taxonomy, and its own particular lessons to teach. Similarly, a very high
proportion of the articles in engineering research journals report investigations of
narrowly defined specialised product classes at every level: for example “Calculation

 The Name and Nature of Software Engineering 35

of Wind Drift in Staggered-Truss Buildings” or “Seismic Response Evaluation of
Post-tensioned Precast Concrete Frames with Friction Dampers.”

To some extent this focus on the particular in the established branches is a natural
consequence of their already highly evolved specialisation. But it is also a precondi-
tion and a cause of specialisation. By recording very specific studies, or carefully
documenting specific designs, researchers and teachers offer practitioners a continu-
ally updated corpus of detailed knowledge that they must not ignore. If only because
each practitioner can master and exploit only a small part of this corpus, specialisation
is an inevitable outcome. In software engineering, by contrast, educational syllabuses
most often concentrate on topics that can be—and are clearly expected to be—treated
at a general or abstract level. Neither of the two industry-standard compilations of
software engineering knowledge—[44] and [42]—refers to a single actual example of
a software engineering artifact. Similarly, conference and journal papers in the field
refer to actual examples of artifacts either not at all or only by way of a case study.
The purpose of a case study is rarely to provide material for learning from experience.
Its more usual purpose, on the dubious principle that one swallow does make a sum-
mer, is to cite application of a proposed tool or technique to at least one plausible
instance, offering this weak evidence to support a claim that the research described is
of general—or, at least, wide—applicability.

There are many reasons for this lack of interest in real software engineering exam-
ples. One is the extreme difficulty that any realistic example places in the path of a
would-be student. The sheer volume of the program text, and, usually, the absence of
useful documentation of the problem world, the software structure, and the develop-
ment decisions and their implementation, contrast with the relative ease with which
the structure of a bridge, a building, a ship or an aeroplane reveals itself, at least in
outline. For some system software artifacts—belonging to the toolset and infrastruc-
ture of software development—this deficit is now being partially repaired by the
availability of open-source program code on the internet; many researchers are
engaged in trying to analyse both the program code and the evidence of its design
structure and of the development stages by which it has evolved. However, for soft-
ware-intensive systems generally, the hopes of Stoy and Strachey [43] that software
publication would become the norm, and that actual examples, good and bad, would
provide lessons for students, are as far from fulfilment as they were thirty six years
ago. Commercial secrecy is not the only barrier to publication of a program of 20
million lines of code.

Another reason is a widespread uncertainty about the nature of computer science
and software engineering and their respective roles. If computer science is regarded as
a branch of pure mathematics, the computer scientist should not be expected to show
interest in actual examples. An example can be interesting to a pure mathematician
only to the extent that it is a counterexample to a theoretical conjecture, or that it
stimulates the formulation of a new conjecture. This lack of interest, then, is not sur-
prising. The practicalities of balancing complicated commercial accounts, for example,
may be hard to master, but they reveal no new mathematical truths about arithmetic,
and are therefore of no interest to a number theorist. Study of the problem world of a
software-intensive system, and its interactions with the machine, offers little or nothing
either to the pure mathematician or to the natural scientist.

36 M. Jackson

Software engineering practitioners, on their side, are notoriously, and astoundingly,
sceptical about the relevance of computer science to their work. They, too, neglect the
problem world and its specific manifestations: not because their minds are occupied
with mathematical theorems, but because they are occupied with the ever more demand-
ing technicalities of the complex development and execution milieux that they use.

The central thesis of this paper, that software engineering needs specialisations fo-
cused on system and component artifacts, seen as synergetic combinations of machine
and problem world, has yet another hurdle to surmount. In their different ways, both
the computer scientist and the software technologist focus their attention on concerns
that abstract entirely, or almost entirely, from any particular problem or particular
problem world. Each, then, has implicitly adopted a view of software engineering that
aspires to be universal, or almost universal, across all problems and problem worlds.
We want to join the established engineering branches by adding software engineering
as one new member of the established engineering set {aeronautical, automotive,
chemical, electrical, ...}. We do not want to hear that this long-standing ambition
must be fundamentally modified, and that we must develop product specialisations
within software engineering that are no less rich, no less highly evolved, and no less
focused on particulars, than those already existing among the established branches.
But it may be the truth.

Acknowledgements

Daniel Jackson very kindly read a very early draft of this paper and made many excel-
lent suggestions for improving it. Valuable suggestions and comments have also been
made by Daniel Berry, Manfred Broy, John Cameron, Peter Freeman, Anthony Hall,
Jon Hall, Tony Hoare, Butler Lampson, Robin Laney, Ashley McNeile, Tom Mai-
baum, Jonathan Moffett, David Notkin, Dewayne Perry, Lutz Prechelt, Brian Randell,
Kevin Ryan, Fred Schneider, Michel Sintzoff, Thein Than Tun, Shmuel Ur and Roel
Wieringa. I have learned much from their comments, and I am grateful to them all.

References

1. Addis, B.: Creativity and Innovation: The Structural Engineer’s Contribution to Design.
Architectural Press (2001)

2. Cantwell Smith, B.: The Limits of Correctness. In: Symposium on Unintentional Nuclear
War; Fifth Congress of the International Physicians for the Prevention of Nuclear War,
Budapest, Hungary, June 28 - July 1 (1985)

3. Cayley, G.: On Aerial Navigation. Nicholson’s Journal (issues of November 1809, Febru-
ary 1810, March 1810)

4. Clark, E.: The Britannia and Conway Tubular Bridges: With General Inquiries on Beams and
on the Properties of Materials Used in Construction. Day and Sons, London (1850)

5. Constant, E.W.: The Origins of the Turbojet Revolution. The Johns Hopkins University
Press (1980)

6. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven Re-
quirements Elaboration. In: Proceedings of the Fourth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, San Francisco, pp. 179–190 (October 1996)

 The Name and Nature of Software Engineering 37

7. Delisle, N., Garlan, D.: Applying formal specification to industrial problems: A specifica-
tion of an oscilloscope. IEEE Software 7(5), 29–37 (1990)

8. Dijkstra, E.W.: On the Cruelty of Really Teaching Computing Science. Communications
of the ACM 32(12), 1398–1404 (1989)

9. Faulk, S.R.: Software requirements: A tutorial; NRL report 7775, Naval Research Labora-
tory, Washington DC (1995)

10. Ferguson, E.S.: Engineering and the Mind’s Eye. MIT Press, Cambridge (1992)
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Object-

Oriented Software. Addison-Wesley, Reading (1994)
12. Godden Structural Engineering Slide Library: Introduction

(last accessed March 13, 2008),
http://nisee.berkeley.edu/godden/godden_intro.html

13. Gordon, J.E.: Structure, Or Why Things Don’t Fall Down. Pelican Books (1978)
14. Haeberer, A.M., Maibaum, T.S.E.: Scientific Rigour, an Answer to a Pragmatic Question: A

Linguistic Framework for Software Engineering. In: Proceedings of the 21st International
Conference on Software Engineering, pp. 463–472. IEEE CS Press, Los Alamitos (2001)

15. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated Consistency Checking of Re-
quirements Specifications. ACM Transactions on Software Engineering and Methodol-
ogy 5(3), 231–261 (1996)

16. Hoare, T., Jones, C., Randell, B.: Extending the Horizons of DSE (GC6). University of
Newcastle upon Tyne, Technical Report CS-TR 853 (2004)

17. Holloway, C.M.: From Bridges and Rockets, Lessons for Software Systems. In: Proceedings
of the 17th International System Safety Conference, Orlando, Florida, pp. 598–607 (1999)

18. Housman, A.E.: The Name and Nature of Poetry. In: The Leslie Stephen Lecture. Cam-
bridge University Press, Cambridge (1932–1933)

19. Jackson, M.A.: System Development. Prentice-Hall, Englewood Cliffs (1983)
20. Jackson, M.: Problem Frames: Analysing and Structuring Software Development Prob-

lems. Addison-Wesley, Reading (2001)
21. Jones, C.: Software Specialization. IEEE Computer, 81–82 (July 1995)
22. Lampson, B.W.: Hints for Computer System Design. IEEE Computer 1(1), 11–28 (1984)
23. Leveson, N.G., Turner, C.S.: An Investigation of the Therac-25 Accidents. IEEE Com-

puter 26(7), 18–41 (1993)
24. Leveson, N.G.: High-Pressure Steam Engines and Computer Software. IEEE Com-

puter 27(10), 65–73 (1994)
25. Levy, M., Salvadori, M.: Why Buildings Fall Down: How Structures Fail. W W Norton

and Co. (1992)
26. McMenamin, S.M., Palmer, J.F.: Essential Systems Analysis. Prentice-Hall, Englewood

Cliffs (1984)
27. Maibaum, T.S.E.: Taking More of the Soft out of Software Engineering. In: Proceedings of

the 7th International Workshop on Software Specification and Design, pp. 2–7. IEEE
Computer Society Press, Los Alamitos (1993)

28. Maibaum, T.S.E.: What we teach software engineers in the university: do we take engi-
neering seriously? In: Proceedings of the 6th European conference held jointly with the 5th
ACM SIGSOFT international symposium on Foundations of Software Engineering, Zu-
rich, Switzerland, September 22-25 (1997)

29. Marzullo, K., Schneider, F.B., Budhiraja, N.: Derivation of Sequential, Real-Time Process-
Control Programs. In: van Tilborg, A.M., Koob, G. (eds.) Foundations of Real-Time Com-
puting: Formal Specifications and Methods, pp. 39–54. Kluwer Academic Publishers,
Dordrecht (1991)

38 M. Jackson

30. Meyer, B.: Object-oriented Software Construction. Prentice-Hall, Englewood Cliffs (1988)
31. Naur, P., Randell, B.: Software Engineering: Report on a conference sponsored by the

NATO science committee, Garmisch, Germany, 7th to 11th October 1968; NATO (Janu-
ary 1969)

32. Parnas, D.L.: Software Aspects of Strategic Defense Systems. Communications of the
ACM 28(12), 1326–1335 (1985)

33. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of Com-
puter Programming 25(1), 41–61 (1995)

34. Parnas, D.L.: Software Engineering: An Unconsummated Marriage. Communications of
the ACM 40(9), 128 (1997)

35. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM SE
Notes, 40–52 (October 1992)

36. Petroski, H.: To Engineer is Human: The Role of Failure in Successful Design. St. Mar-
tin’s Press, New York (1985); Macmillan, London (1986)

37. Petroski, H.: Design Paradigms: Case Histories of Error and Judgement in Engineering.
Cambridge University Press, Cambridge (1994)

38. Polanyi, M.: Personal Knowledge: Towards a Post-Critical Philosophy. Routledge and Ke-
gan Paul, London (1958)

39. Randell, B.: A computer scientist’s reactions to NPfIT. Journal of Information Technol-
ogy 22, 222–234 (2007)

40. The Risks Digest: Forum on Risks to the Public in Computers and Related Systems (last
accessed 24/06/08), http://catless.ncl.ac.uk/Risks/

41. Rogers, G.F.C.: The Nature of Engineering: A Philosophy of Technology. Palgrave Mac-
millan, Basingstoke (1983)

42. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

43. Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs
in Software Engineering; IEEE Computer Society and Association for Computing Machin-
ery Joint Task Force on Computing Curricula, August 23 (2004)

44. Stoy, J.E., Strachey, C.: OS6—an experimental operating system for a small computer.
Part 1: general principles and structure; Part 2: input-output and filing system. Computer
Journal 15(2,3), 117–124, 195–203

45. Guide to the Software Engineering Body of Knowledge, 2004 Version; IEEE Computer
Society Professional Practices Committee (2004)

46. Vincenti, W.G.: What Engineers Know and How They Know It: Analytical Studies from
Aeronautical History. The Johns Hopkins University Press, Baltimore, paperback edition
(1993)

47. Weyl, H.: The Mathematical Way of Thinking; address given at the Bicentennial Confer-
ence at the University of Pennsylvania (1940)

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 39–58, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Modeling Language for Program Design and Synthesis

Don Batory

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

Abstract. Software engineers define structures called programs and use tools to
manipulate, transform, and analyze them. A modeling language is needed to
express program design and synthesis as a computation, and elementary algebra
fits the bill. I review recent results in automated software design, testing, and
maintenance and use the language of elementary mathematics to explain and re-
late them. Doing so outlines a general and simple way to express and under-
stand the relationships between different topics in program synthesis.

1 Introduction

A goal of software engineering research is to understand better how programs can be
developed automatically for well-understood domains. We know the problems of
building such programs, we know the solutions, but all too often these programs are
written by hand, which is an enormously expensive and error-prone task. Today there
is no lack of tools and approaches to synthesize programs automatically. The problem
is that their explanations are mired in a swamp of implementation details and tool-or-
approach-specific concepts that makes them difficult to comprehend and compare. In
effect, we focus too much on implementation minutia to differentiate results and
spend too little time exposing the common abstractions that should unite them.

Many researchers, including myself, are searching for general approaches of auto-
mated program development (e.g., [10][30][35],). In this paper, I present ideas that I
believe are critical to such an approach and how they may fit together. Although a
polished integration is far from complete, I want to share with you some of my pro-
gress from a personal perspective.

Science has always fascinated me: scientists observe different phenomena and cre-
ate theories to explain and predict such phenomena. By doing so, the underlying sim-
plicity of Nature is exposed. Newton’s laws and Maxwell’s unification of magnetism
and electricity are classical examples, where mathematics was the language of sci-
ence. But somewhere in my academic career, I became interested in software design,
where a mathematical orientation to design is the exception, rather than the rule.

As I see it, software engineers define structures called programs and use tools to
transform, manipulate, and analyze them. Today we see many examples. Object orien-
tation uses methods, classes, and packages to structure programs. Compilers transform
source structures into bytecode structures. Refactoring tools map source structures to
source structures. And meta-models of Model Driven Design (MDD) define the allow-
able structures of models, and MDD transformations map models to other models for

40 D. Batory

analysis or synthesis. As a community, we are slowly moving toward the paradigm that
program design and synthesis is a computation. We need a language that brings this
fundamental idea to the forefront.

Although not a mathematician, I have come to realize that models of automated
software development are intimately related to the language of elementary algebra
which provides the essential means to express program design and synthesis pre-
cisely. In short, if you look at program design and implementation in the right way, it
becomes evident that we are using familiar mathematical concepts. Elementary alge-
bra can connect many significant and largely disparate areas of research and, I feel,
provide an “architectural language” or “architectural framework” to express big-
picture concepts in automated software development.

In this paper, I focus on the use of elementary algebra as a language to express
fundamental ideas in program design and synthesis. I explain from an informal, alge-
braic perspective what software engineers do when they create and maintain programs
and cover a series of topics (i.e., pieces of the puzzle) that are relevant to automated
development, where product lines (i.e., a family of similar programs) are a central
focus:

• metaprogramming and product lines,
• testing product lines,
• refactoring product lines, and
• operations for program synthesis.

2 Background

2.1 Program Synthesis and Product Lines

Program synthesis is the idea of programs writing other programs. I view synthesis
from a particular perspective: the source text of programs are values (0-ary functions)
and transformations are unary (1-ary) functions that map the source of an input pro-
gram to the source of an output program. The design of a program is an expression
(i.e., a composition of functions). Frankly, this is an old idea — it originates from
relational query processing of the early 1970s, where the designs of query evaluation
programs were written as compositions of relational algebra operations [32].

Recall that relational query processing is one of the great advances that brought da-
tabases out of the stone age to the technologies with which we are familiar today.
Instead of manually coding a program to retrieve data, a declarative SQL query is
written instead, specifying what to retrieve, but not how. A parser maps an SQL query
to an inefficient relational algebra expression, an optimizer optimizes this expression
using algebraic identities, and a code generator maps the optimized expression to an
efficient Java or C# program (Figure 1). The key to the success of relational query
processing is that query evaluation programs are defined by relational algebra ex-
pressions which can be analyzed and optimized. It is an example of the paradigm
where program design and synthesis is a computation.

 A Modeling Language for Program Design and Synthesis 41

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

designs of query evaluation
programs are expressions

Fig. 1. Relational Query Optimization Paradigm

This paradigm generalizes to other domains, where operations are features that cor-
respond to increments in program functionality. (A feature roughly corresponds some-
thing useful to a customer that some products have while other products don't). A
feature is expressed as a function that maps a program without a given functionality to
a program with that functionality. Features are a hallmark of software product lines
(SPLs), which are families of similar programs. Each program of an SPL is distin-
guished by its set or composition of features; no two programs have the same compo-
sition. One starts with a base program and applies features to progressively elaborate
it. Thus the design of a program is an expression (i.e., a composition of features). Ex-
pression evaluation is program synthesis, and expression optimization is design
optimization [4]. There are many ways to implement features. Popular ways include
program transformations [8], aspects [20], mixins [9][13][33], virtual classes [27],
refinements [30], and traits [29].

Figure 2 displays an example of a simple calculator and its GUI. Figure 2a shows a
Base calculator which adds numbers. The calculator class encapsulates the compu-
tational functionality and the gui class implements the GUI. Figure 2b shows the re-
sult of composing the Sub feature, which introduces the subtraction operation to the
calculator. Note that the net effect of composing Sub with Base is to extend existing
methods, add new fields, add new methods, and (although not shown in this example)
add new classes. Figure 2c shows the result of composing the Format feature for
controlling the display of computed numbers. As before, adding a feature extends
existing methods, adds new fields, adds new methods, and (again, not shown in this
example) add new classes. Note that Base is itself a feature: it adds the rudimentary
calculator and gui classes to an empty program. By defining a set of features, dif-
ferent compositions of features yield different programs of a product line. In general,
the code modifications that Base, Sub, and Format make are typical of features.

Although the example of Figure 2 is simple, the ideas scale. Twenty years ago, I
built extensible database systems exceeding 80K LOC by composing features [2]. Ten
years ago, I built extensible Java preprocessors of size 40K LOC by composing fea-
tures [3]. More recently, the AHEAD Tool Suite was built, which exceeds 250K
LOC, with these same ideas [4]. There are many other people and projects who are
doing something similar in creating feature-based product lines for other domains.

In summary, when a product line is created, the building blocks of programs are
modules called features that define functions (transformations). A function typically
does something very simple: it can add new classes to a program’s source, it can ex-
tend existing classes with new fields and methods, and it can extend (wrap, advise)
existing methods. At least, this is what AHEAD and other tools/languages allow
[4][19]. The design of a program in a product line is the task of writing an expression
(a composition of functions); the synthesis of the target program’s text is expression
evaluation. So the art of program development in product lines is writing functions
that implement features, composing these functions, and evaluating the composition.

42 D. Batory

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

new methods

new fie lds

extend existing methods

(a) Base

(b) Sub Base

(c) Format Sub Base

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

JButton format = new JButton(“format”);

ContentPane.add(format);

form.addActionListener(...);

void formatResultString() {...}
new methods

new fields

extend existing methods

Fig. 2. A Calculator and its Graphical User Interface

Although conceptually the idea is simple, it is important to note that conventional
programming languages (e.g., Java and C#) have limited facilities to enable pro-
grammers to write functions to transform programs. Generics poorly support concepts
that are essential to feature-based development: (1) mixins, a class whose superclass is
specified by a parameter, which enables individual classes to be customized, and (2)

 A Modeling Language for Program Design and Synthesis 43

the scaling of mixins to extend a large number of classes simultaneously [33]. So
there is a significant gap between our approach to constructing programs by compos-
ing transformations and that provided by conventional programming languages. How-
ever, the approach suggests the kinds of extensions that conventional languages will
ultimately need. Some of these extensions are described in subsequent sections.

2.2 Simple Algebraic Models of Product Lines

Now consider an algebraic description of feature-based product lines. The building
blocks of a product line are an empty program and a set of features. The empty pro-
gram is a value (0) and features are unary functions that map an input program (with-
out the given feature) to an output program (that is the input program extended with
that feature). The first function applied to 0 provides the infrastructural base code that
must be present before any additional feature-related logic can be inserted. The pro-
grams of a product line are constructed compositionally by applying features to pro-
grams. Different compositions yield different programs of a product line. In effect, the
design of a program is an expression (i.e., a sequence of unary functions applied to 0).

On closer inspection, it is well-known that not all compositions of features are
meaningful. Product line architects impose constraints on features to limit their com-
positions only to those that make sense. This is the purpose of a feature diagram,
which is a tree-based notation, coupled with constraints, that define the legal combi-
nations of features [12].

I will not go into the details of feature dia-

grams, but their net purpose is to express a
product line as a directed graph (Figure 3).
Objects of the graph are programs in the
product line. The initial object is the empty
program (0). Features are arrows that map an
input program to an output program. Each
object Pi in the graph defines a domain with
one program (the ith program of the product
line). Arrows are maps (unary functions) that
compose. For example, the arrow P1→P2 can
be composed with the arrow P2→P6 to create
an arrow from P1→P6. Arrow composition is associative. Further, there are identity
arrows (maps) for each object, shown as loops in Figure 3. Such a graph is called
a category [31]. In general, a product line is a category. We will see in later sections
how a categorical connection led to recent advances in program testing and synthesis
optimization.

The following idea is not part of categories, but it is useful in understanding pro-
gram synthesis. A traversal from 0 to the target program defines a plan (expression)
which tells us how to construct that program, step-by-step. In Figure 3, one way to
synthesize program P6 is to apply feature a to 0, then b, then d (i.e., P6=d•b•a•0, where

0

P1

P2

P3

P5

P6

P7
P8

a

b

c

d

e

f

d

b

Fig. 3. A Category or Product Line

44 D. Batory

• denotes function composition and 0 is a 0-ary function). Such a traversal is com-
monly called a makefile (i.e., do this, then do this, etc., to build P6)

1
Figure 3 suggests there can be multiple paths to an object. Another makefile for P6

is P6=b•d•a•0. In this case, we find an example of commuting features, i.e., d•b=b•d,
meaning that the order in which features are composed does not matter. Figure a de-
picts such an example for our calculator product line. The features Motif (giving the
calculator GUI a Motif “look-and-feel”) and the Format feature are commutative: they
update disjoint parts of a program, and thus the net effect in which order Motif and
Format are applied is immaterial2.

class calculator { float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

public static void main(String[] args){

new gui();

}

}

UIManager.setLookAndFeel("Motif”);

JButton format = new JButton(“format”);

ContentPane.add(format);

Format
changes

Motif
changes

(a)

(b)

b

b

d d

Fig. 4. Commuting Features: Motif•Format = Format•Motif

Commuting relationships appear in categories as directed rectangles (Figure 4b)
called commuting diagrams. Visually they represent a simple idea: all paths between
two objects in a diagram are equivalent (i.e., each path is a makefile, and different
paths yield semantically equivalent makefiles). We will soon see why commuting
diagrams are useful.

2.3 Program Synthesis

AHEAD [4] is both a methodology and an accompanying set of tools that allow de-
signers to write features as functions that transform the source of an input program to
the source of an output program. AHEAD functions have limited capabilities: new
entities (e.g. classes) can be added to a program’s source, new elements (e.g., fields
and methods) can be added to existing entities, and existing elements can be extended
(e.g., methods can be wrapped).

1 Makefiles also provide an optimization of avoiding the recomputation of stored intermediate

results if computation inputs have not changed. This optimization could be applied here, too,
but is separate from the point that we are making.

2 I Use the notion of syntactic commutativity, where the order in which features are composed
does not alter the program text. Although semantic commutativity is preferred, one can go
quite far with syntactic commutativity in evaluating feature commutativity.

 A Modeling Language for Program Design and Synthesis 45

AHEAD generalizes the ideas of Section 2.1 by recognizing that programs have
multiple representations called artifacts. For example, let program P0 be defined by a
state machine specification S0, its Java source code J0, and its corresponding bytecode
B0. Program P0 is represented by a 3-tuple of artifacts [S0,J0,B0]. Features are func-
tions that map tuples of input programs to tuples of output programs; each program
representation is extended to capture the change that the new feature makes to that
representation. For example, suppose feature a maps P0 to P1 by extending the original
state machine specification S0 to S1, the Java code J0 is extended to J1, and the byte-
code B0 is extended to B1. Similarly, feature b maps P1 to P2; and feature c maps P2 to
P3. This mapping is depicted by the horizontal arrows in Figure 5. Features capture
the lock-step extension of multiple artifacts, which is the central idea behind feature-
based program synthesis.

P0

S0

J0

B0

P1

S1

J1

B1

P2

S2

J2

B2

P3

S3

J3

B3

a b c

Fig. 5. Lock-Step Extension of Program Artifacts by Features

Here’s the connection of Figure 5 to Figure 3: Let P0 denote the empty program (with
empty source, empty bytecode, and empty documentation). The path 0→P1→P2→P3 in
Figure 3 is the path at the top of Figure 5. This linear path is expanded to show the hori-
zontal paths between the three representations of each program, at the bottom of Figure
5. So each path from 0 to a program Pi in Figure 3 corresponds to a mesh of horizontal
arrows and program representations in Figure 5.

Model Driven Design (MDD) contributes another fundamental ingredient to auto-
mated software development [34][35]. MDD is an increasingly prominent paradigm
for program specification and synthesis, and is also based on the idea that a program
has multiple representations, but a different terminology is used. A program repre-
sentation is called a model. Functions (a.k.a. transformations) map input models to
output models. MDD models are usually just data (e.g., UML class diagrams with no
methods), but more generally a model can be any artifact (e.g., a Java class). State
machines, source code, and bytecode are examples of models. MDD historically has
focussed on the vertical transformations in Figure 5, i.e., the mapping of models
of one type to models of another. Integrating MDD (vertical arrows) with product
lines (horizontal arrows) is a topic in its infancy. Returning to vertical arrows, we
have a tool jak2java:S→J that maps state machine specs to Java source, and of
course, there is the Java compiler (javac:J→B) that maps Java source to bytecodes.

46 D. Batory

Although considered tools, jak2java and javac are transformations that map one
artifact to another3.

Feature Oriented Model Driven Design (FOMDD) is a unification of AHEAD and
MDD. The key idea is to transform arrows that extend high-level artifacts to arrows
that extend lower-level artifacts. In Figure 5, a user defines the arrows that map state
machines S0→S1, S1→S2, and S2→S3. FOMDD maps these arrows to the corre-
sponding arrows between Java source representations and bytecode representations.
That is, FOMDD maps arrow S0→S1 to arrow J0→J1 and then arrow J0→J1 to arrow
B0→B1. The same holds for the other arrows S1→S2, and S2→S3. By making all arti-
fact-extension arrows explicit, a commuting diagram of program representations
emerges: composing features sweeps out (in this case) the diagram of Figure 5.

A software engineering interpretation of the diagram of Figure 5 is straightforward:
start with the object in the upper-left-hand corner (namely the state machine S0 of
program P0), and derive the object in the lower-right-hand corner (namely the byte-
code B3 of program P3 — see Figure 6). We know that each path between these two
objects is equivalent, in that both derive B3 from S0, but they do so in different ways.
An immediate observation is that traversing arrows has a cost. When a metric for ar-
row traversal is defined, the regular geometry of Figure 5a warps to an irregular ge-
ometry like Figure 5b. Although all paths produce semantically equivalent results, not
all paths are equidistant (meaning that some makefiles are cheaper to execute than
others). The shortest path, called a geodesic, is the most efficient makefile that syn-
thesizes the target object from the initial object. If all arrows have equal cost as in
Figure 6 a, any path is a geodesic. However, only the indicated path in Figure 6b is a
geodesic.

Note that a “cost metric” need not be a monetary value or execution time; cost may
be a measure in production time, peak or total memory requirements, some informal
metric of “ease of explanation”, or a combination of the above (e.g., multi-objective
optimization). The idea of a geodesic is quite general, and should be appreciated
from this more general context.

(a) regular geometry (b) warped geometry

Fig. 6. Commuting Diagrams With and Without Cost Met

3 More generally, MDD transformations can take n input models and produce m output models.

This is not a problem for us: a function maps a single composite model (which is a tuple of n
input models) and produces a single composite model (which is a tuple of n output models).
Projection functions permit access to individual components of a tuple.

 A Modeling Language for Program Design and Synthesis 47

An interesting question is: can geometry warping be used to our advantage? That
is, are there interesting problems where geodesics are important? The answer is “yes”,
and we discuss one such example in the next section.

3 Testing Software Product Lines4

Testing software product lines is an important
and poorly understood problem. Not only
should we be able to generate customized pro-
grams given a set of selected features, we also
should automatically produce evidence that our
generated programs are correct [7][22][23]. In
particular, how can we produce tests for every
program in a product line? Ideally, our method
should be automatic; the manual creation of
comprehensive tests scales poorly.

Specification-based testing can be an effec-
tive approach for testing the correctness of
programs [11][15][18]. The idea is to map a
program’s specification automatically to test
inputs. These inputs are submitted to the pro-
gram, and the program’s response to these tests
can be validated automatically using correctness
criteria. Figure 7a shows the vertical (derivation)
arrows that map specifications of programs
{S0...S5} of a product line to their tests
{T0...T5}. But we also know that features con-
nect (relate) different program specifications.
These are the horizontal arrows in Figure 7b.
But elementary mathematics predicts there also
must be arrows that connect (relate) generated
tests, thus completing the commuting diagram of
Figure 7b to yield Figure 7c [31]5. By completing the diagram, we immediately recog-
nize, for example, that there are multiple ways of producing test T5 starting from speci-
fication S0. We observed that conventional research follows a particular path: start with
the original specification S0, progressively refine it to S5, and then derive the test T5
using some tool. That is, conventional tools and approaches follow particular paths in
the diagram of Figure 7c to produce results, but some paths — particularly the paths that
refine tests — have not been explored as we were unaware of them. The challenge is
that it is not at all obvious how to take any path other than the conventional path —
we’ve never taken any other path! Herein lies the potential for geodesics and the “pre-
dictions” or generalizations our approach can bring.

4 This is joint work with S. Khurshid, E. Uzuncaova, and D. Garcia [40][42].
5 The completion of diagrams, as described above, corresponds to a pushout [31].

S 0

S 1

S 3

S 4
S 2 S 5

T 0

T 1

T 3

T 4
T 2 T 5

S 0

S 1

S 3

S 4
S 2 S 5

T 0

T 1

T 3

T 4
T 2 T 5

S 0

S 1

S 3

S 4
S 2 S 5

T 0

T 1

T 3

T 4
T 2 T 5

(a)

(b)

(c)

Fig. 7. Completion of Commuting

Diagrams

48 D. Batory

Our case study was test generation using Alloy [17][18]. An Alloy specification S
for program P is written. This specification defines properties (constraints) that the
data structures must satisfy. The Alloy analyzer [17][37] maps spec S to T. To ex-
press the mappings of features, we exploit the fact that a feature is an increment in
functionality. In principle, we start with a base program B with Alloy spec SB. Feature
G has specification SG that extends the spec of the base program. When G is composed
with B to produce program P=G•B, let us assume that the composite specification is
SP=SB∧SG (i.e., the conjunction of the G and B specs)6. The Alloy analyzer translates
SP into a propositional formula. This formula is solved by a SAT solver yielding IP.
Each solution in IP is converted into a test program [24]. The set of all test programs
that is produced from IP is TP. The Alloy tool-set has been used to check designs of
various applications such as Intentional Naming System for resource discovery in
dynamic networks [28], a static program analysis method for checking structural
properties of code [36], and formal analysis of cryptographic primitives [26].

Some pragmatic observations: as a specification becomes more complex, finding
its solutions tends to become more costly (Figure 8). For example, generating an in-
stance of a linked list with 18 nodes using the Alloy Analyzer takes 41 seconds on
average. However, when the specification is refined to that of ordered linked list,
computing lists of comparable size is exceedingly expensive. In our experiments, we
terminated the SAT solver after an hour of computation, unable to find a solution.
Clearly, a problem with Alloy is scaling the size of problems it can handle.

product # of
nodes

ave time to
generate

ratio

base 18 41s

ordered•base 18 stopped after 1 hr > 87x

Fig. 8. Scalability of Test Generation

An elegant way to scale test generation was proposed by Uzuncaova [41]. Instead
of solving the entire formula SP (as is done conventionally), an alternative is to find a
solution IB to the base program SB, and then use IB as a constraint for solving SP. That
is, start with the solution (tests) of a simpler program, and extend it to a solution
(tests) of a more complex program. This procedure is called the incremental ap-
proach, and it has appealing properties. First, it is sound: any solution of SP that can
be computed from IB is, obviously, a solution of SP. Second and more interesting, it is
complete: any solution to SP must embed a solution to subproblem SB. Thus, by iterat-
ing over solutions to SB, it is possible to enumerate all solutions of SP (note: some so-
lutions to SB may not extend to solutions of SP, and some SB solutions may extend to
multiple SP solutions). The incremental approach allows us to traverse new synthesis
paths that we were previously unaware. The question is: what is the benefit?

Initial experimental results comparing the incremental approach with the conven-
tional approach are encouraging. Figure 9 shows the time for creating tests for a prod-
uct line of lists (a standard example of researchers using the Alloy analyzer). For some

6 The composition of specifications may not always be this simple, although specification con-

junction is both a common assumption and occurrence in actual systems [7].

 A Modeling Language for Program Design and Synthesis 49

experiments, the conventional approach was faster. The reason is that the composite
predicates were simple enough to solve directly — it was overkill to partition them into
elementary predicates, solve the simpler predicates, and then extend their solutions.
However, for a majority of cases, the conventional approach to solve a composite
predicate directly was often more than an order of magnitude slower than an incremen-
tal approach. In several cases, an incremental approach was 20× faster. The reason is
that it is easier to find solutions to simple predicates and to extend those solutions.

It is possible to permute the order in which features are composed. Although the
technical details for how this is can be done for arbitrary program artifacts is beyond
the scope of this paper (see [21] for details), in principle, the idea is clear for the way
Alloy specifications are composed. Figure 10 shows the construction of tests for a bal-
anced search tree; the different ways in which a tree specification (S0) can be mapped
to the tests for a balanced search tree (T2) is visualized by a 3-dimensional commuting
diagram. Note that the conventional and incremental approaches correspond to partic-
ular paths in this diagram. We evaluated all possible paths through this cube.

Fig. 9. Conventional v.s Incremental Test Generation

Conventional paths traverse the top of the cube starting at S0 and lastly deriving the
test T2 from the full specification of S2. The fastest this could be accomplished was in
4.87 seconds. Incremental paths derived test T0 immediately, and traversed the bottom
of the cube to T2. The fastest that this could be accomplished was in 1.34 seconds, a
factor of 3.6× improvement. However, neither of these traversals was a geodesic: the
fastest traversal is formed by first refining S0 by the balance feature, then deriving the
test for balanced trees, and finally extending this test by the search feature to T2. This
path was traversed in .18 seconds, a 27.3× factor improvement over the conventional
approach. Further work by Uzuncaova introduced a constraint prioritization approach
that can assist in identifying an optimal path for test generation; details of this ap-
proach are described elsewhere [41].

Although this line of work (e.g., following novel paths to synthesize program arti-
facts) is in its infancy, initial results are encouraging. Elementary mathematics tells us
ways of generating results efficiency that we didn’t have before — what we are doing
above is exploiting geometry warping. For more details, see [42]. For examples of
using geodesics for optimizing the synthesis of programs, see [38][39].

50 D. Batory

conventional4.87 sec

incremental1.34 sec
3.6×

mixed (geodesic)0.18 sec
27.3×

S0 balance

balance

balance

balance
T2

start

end

Fig. 10. Geodesic in a Commuting Diagram

4 Refactoring Product Lines

A refactoring is a disciplined technique (a.k.a. transformation) for restructuring a
body of code that changes its structure but not its behavior [14]. There are many com-
mon refactorings in use in the object-oriented (OO) programming: move field (from
one class to another), delete method (usually done when no references to the method
exist), change argument type (i.e., replacing an argument type with its supertype),
replace method call (with another that is semantically equivalent in the same class),
and so on. An interesting question is: how do refactorings affect a product line? What
happens a feature is refactored, say by moving a field or method from one class to
another? Not surprisingly, little is known about this subject. In this section, I present
conjectures on possible directions of research and how our approach/language illumi-
nates this topic.

A common design technique in product lines is to superimpose the OO class dia-
grams of all programs. Doing so defines a class diagram of a “master plan” for all
programs in the SPL. It encourages a standard meaning and naming convention for
all classes and their members that appear in any program of a product line. Stated
differently, a “master plan” avoids the complexity and confusion that would arise
if inconsistent meanings and names are used for the same method (e.g., m() means
θ in program P1, but is named n() in program P2, and means ¬θ in program P3). Such
inconsistencies would make a product line incomprehensible to engineers who are
responsible for maintaining and extending it. Standardization of meanings and names
is a common way to control complexity in SPLs and in many other engineering
disciplines [1].

Figure 11a depicts a master plan. The black feature has classes A (members x,y),
and B (members r,s). The orange feature adds class C (members u,v) and member t
to B and z to A. The blue feature adds class D (members m,n). And the red feature
adds class E (members i,j,k) and member w to C. Eliminating unwanted features
yields the class diagram of a program in the master plan’s product line.

 A Modeling Language for Program Design and Synthesis 51

D
m

A

x
h

B

r

s

z

t

C
u
v

E
i

n
pw

j
k

rename y to h

move B.r to A.r

D
m

A

x
y

B
r
s

z

t

C
u
v

E
i

n
pw

j
k

Fig. 11. Refactoring Master Plans of SPLs

Refactoring a feature can involve any standard OO refactoring: members can be
renamed, members can be moved from one class to another, etc. There are also non-
standard refactorings that are feature-specific, such as moving members from one fea-
ture to another. In general, refactoring a feature alters many programs of a product
line. As an example, if member y in class A is renamed to h, then all programs of the
product line that use the black feature will see this renaming (Figure 11b). The same
holds for moving method r in class B to class A (Figure 11b): all programs of the prod-
uct line that use the black feature will see these changes.

Here is a working hypothesis (conjecture): refactoring an SPL is the same as refac-
toring one huge program where typically not all pieces of this program are present in
any one member of this SPL. Composition of features is modeled by a projection of
this “huge” program that eliminates unneeded features. So by refactoring a single
“huge” program, an entire product line is refactored.

To better understand the refactoring of features, consider Figure 12a. Suppose the
black feature maps the empty program (0) to program P1. Any change to black that
we considered (e.g., renaming y or moving B.r to A.r) will be visible to any program
“downstream” (meaning any program that is derivable from) P1. Any program that
does not use the black feature, such as 0, P2, and P7, will be oblivious to this change.

So when a refactoring R is applied to a feature, it potentially transforms every pro-
gram in a product line. That is, R maps each program of the original product line to a
corresponding and unique program in the refactored project line (Figure 12b). In effect,
R defines the object-to-object mappings from the original category (product line) to the
new category (the refactored product line). But looking closer, we recognize that pro-
grams of a product line are not stored — they are computed by composing features.
What is being refactored are the arrows (the modules that implement individual fea-
tures). So a product line refactoring actually maps both objects and arrows of a category
(product line) such that the arrows (computed and otherwise) of the original category
(product line) are preserved. Stated differently, a refactoring is a structure preserving
map between two categories. This concept is known as a functor in category theory
[31]7. The functors that frequently arise in feature-based development are maps between
isomorphic categories (i.e., categories that have the same shape, but possibly different
labels for corresponding objects and arrows). We call such functors manifest.

7 A functor from category C1 to category C2 is an embedding of C1 into C2 [31].

52 D. Batory

0
P2

P1 P3

P4

P5

P6

P7downstream direction

0 P2

P1

P3

P4

P5

P6

P7

original product-line

0 R2

R1

R3

R4

R5

R6

R7

refactored product-line

R() =

0 P2

P1

P3

P4

P5

P6

P7

a

b

c

cd
d

e

f

0 R2

R1

R3

R4

R5

R6

R7

A

B

C

CD
D

E

F

R() =

original product-line refactored product-line

(a)

(b)

(c)

Fig. 12. Refactoring Product Lines

We have seen several examples of manifest functors already in this paper. Each tu-
ple of Figure 5 defines a category of program artifacts (the jak2java tool maps a state
machine spec to its Java code counterpart, javac maps Java source to bytecodes).
Features define manifest functors from one tuple to another. Figure 7a defines a mani-
fest functor from a product line of program specifications to a product line of program
tests. Alloy tools implement the object-to-object mappings of this functor.

I conjecture that features, MDD
transformations, and refactorings
can be unified in the following
way. Consider Figure 13. Starting
with a state machine specification
of program P0, we want to derive
the bytecodes (B1) for a refactored
program P1. A conventional way is
to refine S0 by applying a feature,
and then refactor the state machine
(e.g., renaming states), and then
derive its bytecode implementa-
tion (B1). This corresponds to the
“upper-perimeter” path of the cube

Fig. 13. Unifying Refactorings, MDD, and Features

S 1

J 1

B 1

J 0

B 0

S 0

J 0

B 0

S 1

J 1

B 1

S 0

E n d

S ta rt

 A Modeling Language for Program Design and Synthesis 53

in Figure 13. Alternatively we might immediately derive the bytecode implementation of
S0, refactor the bytecode, and then apply the corresponding (refactored) bytecode feature
to produce B1. This corresponds to the “bottom-perimeter” path of the cube in Figure 13. A
pragmatic reason for this alternative path is that one does not have to expose the state ma-
chine specifications (or their source refinements) to users. If a product line comes with a
set of binary (not source) features that can be composed and refactored, the intellectual
property (IP) of the original state machines may be better preserved. This certainly is the
case for conventional COM components and proprietary Java libraries which are typically
distributed in binary form for, among many reasons, increased IP protection.

Commuting diagrams, such as Figure 13, suggest how elementary mathematics can
neatly tie together basic concepts in feature-based product lines, transformations in
MDD, and refactorings. But much more work is needed to (a) demonstrate this and
(b) recognize the technical and educational benefits in doing so. This is a subject of
ongoing research.

5 Operations for Program Synthesis8

As mentioned earlier, AHEAD defines features as functions that map tuples to tuples.
In my informal conversations with mathematicians many years ago, a question arose
frequently: can feature compositions be modeled by a vector space? Of course, I had
no answer and only recently began thinking about it and its implications.

Informally, a vector space is a collection of tuples called vectors, where vectors
can be added and scaled. Formally, a vector space satisfies a number of basic axioms,
such as vector addition:

• is commutative: ∀x,y∈V: x+y=y+x

• is associative: ∀x,y,z∈V: (x+y)+z=x+(y+z)

• and has an additive identity: ∀x∈V: 0+x=x

where V is the set of all vectors and 0∈V is the zero vector. Further, vectors can be
scaled by multiplication:

• scalar multiplication: ∀m∈M: m⋅[a,b,c]=[m⋅a,
m⋅b, m⋅c]

• scalar multiplication distributes over vector addition: ∀m∈M and ∀x,y∈V:
m⋅(x+y)=m⋅x+m⋅y

where M is the set of all scalar multipliers and m⋅x means scale vector x by m. Of course,
my immediate reaction (like yours no doubt) is: what does this have to do with soft-
ware development? But on further thought, I realized that my questions should have
been: Is there an addition operation in software development? And is there a scaling
operation? To my surprise, the answer to both questions is “yes”. Every feature that I
have built with AHEAD has both operations, but I failed to recognize them.

8 This is joint work with D. Smith [5].

54 D. Batory

Recall an earlier example, which I reproduce in Figure 14. Note that when a feature
is composed, we see an addition operation in action: a feature can add new classes
and add new members to existing classes. The order in which classes/members are
added is immaterial (i.e., addition is commutative and associative), and adding noth-
ing to a program yields that program (i.e., addition has an additive identity, namely 0,
the empty program).

There is also a modifica-

tion operation, which is a
form of scaling: a feature
can extend existing meth-
ods with new code. There
are many ways in which
code modifications can be
expressed, but all satisfy
the properties of scalar
multiplication. For exam-
ple, a transformation is a
(pattern, rewrite) pair
[8]: when the pattern is
found in source code, it is
modified according to the
rewrite. A transformation
is applied to all components of a program (i.e., it matches the idea above of scalar
multiplication where the modification is applied to all components of a vector). One
can recognize these ideas in Aspect Oriented Programming (AOP): AOP advice is a
(pointcut, modifier) pair: the pointcut identifies patterns in program execution,
and the modifier is extra code that is to be run when that pattern occurs during run-
time. Although AOP advice is understood in terms of extending program executions,
it is well-known that AOP compilers weave advice statically, which can be conceptu-
alized by transformation (pattern, rewrite) pairs [25].

To make this concrete, consider the following example. Figure 15a shows a Base
buffer whose value can be set. Figure 15b shows the Restore feature (as expressed in
AspectJ, which we assume a minimal familiarity [20]), that allows one to restore the
previous contents of a buffer. Figure 15c shows the composition of Restore•Base.

Let’s see how to express this design algebraically. We model a class by a tuple,
one component per possible member. The tuple for class buffer (Figure 15a) is
Base()=[buf,set,0,0], where buf denotes the Java declaration of the buf variable
and set denotes the Java declaration of the set() method. The extra zeros (0) mean
that the restor and back members are presently undefined.

We model the Restore feature as a unary function that takes a tuple v as input and

produces a tuple as output:

Restore(v) = [0,0,back,restor] + ∆set⋅v

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

JButton format = new JButton(“format”);

ContentPane.add(format);

form.addActionListener(...);

void formatResultString() {...}

calcsub •format •

add new methods

add new fields

scale existing methods

add new methods

add new fields

scale existing methods

 Fig. 14. Addition and Modification of Java Source

 A Modeling Language for Program Design and Synthesis 55

class buffer {
int buf=0;

void set(int i)
{ buf=i; }

}

aspect Restore {
int buffer.back=0;

void buffer.restor()
{ buf=back; }

before():
execution(set(int))
{ back=buf; }

}

class buffer{
int buf=0;
int back=0;

void set(int i)
{ back=buf; buf=i; }

void restor()
{ buf=back; }

}

(a)

(b) (c)

Fig. 15. Base, Restore, and Restore•Base

Let’s see what the above means. The Restore feature adds members back and re-
stor to class buffer. This is expressed by the tuple [0,0,back,restor]. The before
advice is represented by ∆set, which is to be applied to the input class v. To compose
Base with Restore, we evaluate Restore•Base:

Restore•Base
= [0,0,back,restor] + ∆set⋅[buf,set,0,0] // substitution

= [0,0,back,restor] + [∆set⋅buf,∆set⋅set,∆set⋅0,∆set⋅0]

 // scalar mult.

The above expression can be simplified by noting that ∆set only affects the set()
member (component); it has no effect on the other members (as ∆set does not capture
any of their join points). Let set’ denote the Java definition of the set() method in
Figure 15c. Simplifying:

= [0,0,back,restor] + [buf,∆set⋅set,0,0] // simplify

= [0,0,back,restor] + [buf,set’,0,0] // substitution

= [buf,set’,back,restor] // addition

Note that the resulting tuple [buf,set’,back,restor] represents the class buffer
in Figure c. The last step in a computation is to transform this tuple into its source
code representation (Figure c).

Here’s how to understand this calculation in a more general setting: given an input
feature expression (e.g., Restore•Base), a compiler will inhale the code of each fea-
ture; convert the code into an arithmetic expression; evaluate, simplify, and possibly
optimize the feature expression; and translate the resulting tuple into the output pro-
gram, just as we did above. In effect, I foresee feature-based compilers will be pro-
gram calculators that use simple algebraic rewrites to optimize program synthesis. In
effect, this is what AHEAD is doing now, except at a much finer level of granularity.

In [5][6], I show how these ideas can be taken further. Refactorings are operators
that map expressions to expressions. So the idea that engineers manipulate programs
algebraically by tools and compilers is given a more algebraic foundation. Of course,
much more work is necessary, but hopefully you get the idea.

56 D. Batory

Having said this, there are clear mismatches in program development and vector
spaces. Scaling (modification) of source code is highly non-uniform. Only selected
methods are modified by an advice in AOP. Source code does not seem to have an
additive inverse. Classes and class members can be deleted, but there does not appear
to be the notion of a “negative” or “anti” method, which (when added to its positive
counterpart) annihilates that method. Further, it is debatable whether modifiers (ad-
vice) belong to the same type of elements as method definitions and fields.

Although the analogy with vector spaces is at best suggestive, it is still useful.
Making explicit the operations of addition, subtraction, and modification offers a sim-
ple language to explain complex processes involving program refactoring and relating
different feature-based programming concepts by focussing on their similarities,
rather than their implementation differences [6][25].

6 Conclusions

Software engineers define structures called programs that evolve though additions (of
classes, methods, fields), deletions (removal of classes, methods, fields), and transfor-
mations (adding features and refactoring). The language of simple mathematics can be
used to describe these processes in an understandable and uniform way, and has both
pedagogical and practical benefits, such as revealing new ways to synthesize artifacts.

Ultimately, however, it requires us to think differently. Software development may
be an ad hoc practice in general, but the automated development of software in well-
understood domains should not be. It requires us not to think in terms of monolithic
designs, but rather in terms of changes to designs, and composing (or rather integrat-
ing) a sequence of changes to produce complete designs. That is really what we do
when we build and modify programs incrementally, although we don’t normally think
of program construction in this way.

Clearly there is a lot more to do. Using mathematics to express the essence of auto-
mated software development is, in my opinion, a first step toward principled auto-
mated software engineering. It will tell us on how to think about program construction
in a structured and non-ad-hoc way. It is clear that many ideas are being reinvented
over and over again: this is not accidental; it is a symptom or characteristic that what
we are doing is part of a larger paradigm that we are only now beginning to under-
stand. Doing so will lead to better design and program construction techniques, better
tools and languages, and better design methodologies. And it may also lead the way to
deeper applications of mathematics to the construction and synthesis of programs with
assured or verified properties.

Acknowledgements. I appreciated the help and patience of Prof. Egon Börger by
allowing me to take my time in writing this paper. I also appreciated the helpful and
insightful comments of the referees.

References

[1] ASME web site,
 http://www.asmesolutions.org/Energy/Nuclear.cfm

[2] Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Software Sys-
tems with Reusable Components, October 1992. ACM TOSEM, New York (1992)

 A Modeling Language for Program Design and Synthesis 57

[3] Batory, D., Lofaso, B., Smaragdakis, Y.: JTS: Tools for Implementing Domain-Specific
Languages. In: ICSR 1998 (1998)

[4] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE
(2004)

[5] Batory, D., Smith, D.: Finite Map Spaces and Quarks: Algebras of Program Structure.
University of Texas at Austin, Dept. of Computer Sciences, TR-07-66 (2007)

[6] Batory, D.: Program Refactorings, Program Synthesis, and Model-Driven Design. In:
Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420, pp. 156–171.
Springer, Heidelberg (2007)

[7] Batory, D., Börger, E.: Modularizing Theorems for Software Product Lines: The Jbook
Case Study. JUCS (to appear)

[8] Baxter, I.D.: Design Maintenance Systems. In: CACM (April 1992)
[9] Bracha, G., Cook, W.: Mixin-Based Inheritance. In: OOPSLA and ECOOP (1990)

[10] Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A Language
and Toolset for Program Transformation. Sci. of Computer Programming (2008)

[11] Chang, J., Richardson, D.J.: Structural Specification-Based Testing: Automated Support
and Experimental Evaluation. ACM SIGSOFT/FSE, New York (1999)

[12] Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools, and Applica-
tions. Addison-Wesley, Boston (2000)

[13] Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: POPL (1998)
[14] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the

Design of Existing Code. Addison-Wesley, Reading (2005)
[15] Goodenough, J., Gerhart, S.: Toward a Theory of Test Data Selection, June. IEEE TSE

(June 1975)
[16] Jackson, D., Schechter, I., Shlyakhter, I.: ALCOA: The Alloy Constraint Analyzer. In:

ICSE 2000 (2000)
[17] Jackson, D.: Alloy: A Lightweight Object Modeling Notation. ACM TOSEM (April

2002)
[18] Jackson, D.: Software Abstractions: Logic, Language and Analysis. The MIT Press,

Cambridge (2006)
[19] Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In: ICSE

2008 (2008)
[20] Kiczales, G., et al.: An Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001,

vol. 2072, p. 327. Springer, Heidelberg (2001)
[21] Kim, C.H.P., Kästner, C., Batory, D.: On the Modularity of Feature Interactions (submit-

ted 2008)
[22] Krishnamurthi, S., Fisler, K.: Modular Verification of Collaboration-Based Software De-

signs. In: Matsui, M. (ed.) FSE 2001, vol. 2355. Springer, Heidelberg (2002)
[23] Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying Aspect Advice Modularly. ACM

Press, New York (2004)
[24] Khurshid, S.: Generating Structurally Complex Tests from DeclarativeConstraints., Ph.D.

Thesis, MIT EECS (2003)
[25] Lopez-Herrejon, R., Batory, D., Lengauer, C.: A Disciplined Approach to Aspect Com-

position. In: PEPM 2006 (2006)
[26] Lin, A., Bond, M., Clulow, J.: Modeling Partial Attacks With Alloy. In: Security Proto-

cols Workshop (SPW) (April 2007)
[27] Madsen, O.L., Møller-Pedersen, B.: Virtual Classes: A Powerful Mechanism in Object-

Oriented Programming. In: OOPSLA 1989 (1989)

58 D. Batory

[28] Marinov, D., Khurshid, S.: TestEra: A Novel Framework for Automated Testing of Java
Programs. In: ASE (2001)

[29] Murphy-Hill, E.R., Quitslund, P.J., Black, A.P.: Removing Duplication from java.io: A
Case Study Using Traits. In: OOPSLA 2005 (2005)

[30] Pavlovic, D., Smith, D.R.: Software Development by Refinement. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational
Support. LNCS, vol. 2757, pp. 267–286. Springer, Heidelberg (2003)

[31] Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge
(1991)

[32] Selinger, P., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access Path
Selection in a Relational Database System. In: ACM SIGMOD (1979)

[33] Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation Tech-
nique for Refinements and Collaboration-Based Designs. In: ACM TOSEM (April 2002)

[34] Stahl, T., Voelter, M.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, Chichester (2006)

[35] Sztipanovits, J.: Generative Programming for Embedded Systems. In: GCSE (2002)
[36] Taghdiri, M.: Inferring Specifications to Detect Errors in Code. In: ASE (2004)
[37] Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O., Huth, M.

(eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)
[38] Trujillo, S., Azanza, M., Diaz, O.: Generative Metaprogramming. In: GPCE 2007 (2007)
[39] Trujillo, S., Batory, D., Diaz, O.: Feature Oriented Model Driven Development: A Case

Study for Portlets. In: ICSE 2005 (2007)
[40] Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: A Specification-based Approach to

Testing Software Product Lines. Poster Paper ACM SIGSOFT (2007)
[41] Uzuncaova, E., Khurshid, S.: Constraint Prioritization for Efficient Analysis of Declara-

tive Models. In: Symposium on Formal Methods, FM (May 2008)
[42] Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: Testing Software Product Lines Us-

ing Incremental Test Generation (submitted 2008)
[43] Wikipedia, Multiobjective optimization,

 http://en.wikipedia.org/wiki/Multiobjective_optimization

A Method for Verifiable and Validatable
Business Process Modeling

Egon Börger1 and Bernhard Thalheim2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

2 Chair for Information Systems Engineering, Department of Computer Science,
University of Kiel D-24098 Kiel

thalheim@is.informatik.uni-kiel.de

Abstract. We define an extensible semantical framework for business
process modeling notations. Since our definition starts from scratch, it
helps to faithfully link the understanding of business processes by an-
alysts and operators, on the process design and management side, by
IT technologists and programmers, on the implementation side, and by
users, on the application side. We illustrate the framework by a high-level
operational definition of the semantics of the BPMN standard of OMG.
The definition combines the visual appeal of the graph-based BPMN with
the expressive power and simplicity of rule-based modeling and can be
applied as well to other business process modeling notations, e.g. UML
2.0 activity diagrams.1

1 Introduction

Various standardization efforts have been undertaken to reduce the fragmenta-
tion of business process modeling notations and tools, most notably BPMN [15],
UML 2.0 activity diagrams [1] and BPEL [2]. The main focus has been on rig-
orously describing the syntactical and graphical elements, as they are used by
business analysts and operators to define and control the business activities
(operations on data) and their (event or process driven and possibly resource
dependent) execution order. Less attention has been paid to an accurate semanti-
cal foundation of the underlying concepts, which captures the interplay between
data, event and control features as well as the delicate aspects of distributed
computing of cooperating resource sensitive processes. We define in this paper
a simple framework to describe in application domain terms the precise execu-
tion semantics of business process notations, i.e. the behavior of the described
processes.
1 The work of the first author is supported by a Research Award from the Alexander

von Humboldt Foundation (Humboldt Forschungspreis), hosted by the Chair for
Information Systems Engineering of the second author at the Computer Science
Department of the University of Kiel/Germany.

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 59–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

60 E. Börger and B. Thalheim

In the rest of the introduction we describe the specific methodological goals
we pursue with this framework, motivate the chosen case study (BPMN) and
justify the adopted method (Abstract State Machines method).

Methodological Goals. We start from scratch, avoiding every extraneous
(read: non business process specific) technicality of the underlying computa-
tional paradigm, to faithfully capture the understanding of business processes
in such a way that it can be shared by the three parties involved and serve as a
solid basis for the communication between them: business analysts and opera-
tors, who work on the business process design and management side, information
technology specialists, who are responsible for a faithful implementation of the
designed processes, and users (suppliers and customers). From the business pro-
cess management perspective it is of utmost importance to reach a transparent,
easily maintainable business process documentation based upon such a common
understanding (see the investigation reported in [22]).

To make the framework easily extensible and to pave the way for modular and
possibly changing workflow specifications, we adopt a feature-based approach,
where the meaning of workflow concepts can be defined elementwise, construct by
construct. For each investigated control flow construct we provide a dedicated set
of rules, which abstractly describe the operational interpretation of the construct.

To cope with the distributed and heterogeneous nature of the large variety
of cooperating business processes, it is crucial that the framework supports de-
scriptions that are compatible with various strategies to implement the described
processes on different platforms for parallel and distributed computing. This re-
quires the underlying model of computation to support both true concurrency
(most general scheduling schemes) and heterogeneous state (most general data
structures covering the different application domain elements). For this reason
we formulate our descriptions in such a way that they achieve two goals:

separate behavior from scheduling issues,
describe behavior directly in business process terms, avoiding any form of
encoding. The reason is that the adopted framework must not force the
modeler to consider elements which result only from the chosen description
language and are unrelated to the application problem.

Since most business process models are based on flowcharting techniques, we
model business processes as diagrams (read: graphs) at whose nodes activities
are executed and whose arcs are used to contain and pass the control infor-
mation, that is information on execution order.2 Thus the piecemeal definition
of the behavior of single workflow constructs can be realized by nodewise de-
fined interpreter rules, which are naturally separated from the description of the
underlying scheduling scheme. Scheduling together with the underlying control
flow determines when a particular node and rule (or an agent responsible for
applying the rule) will be chosen for an execution step.

2 This does not prevent the use of dedicated arcs to represent also the data flow and
other associations.

A Method for Verifiable and Validatable Business Process Modeling 61

Case Study. As a challenging case study we apply the framework to provide
a transparent accurate high-level definition of the execution semantics of the
current BPMN standard, covering each of its constructs so that we obtain a
complete abstract interpreter for BPMN diagrams (see Appendix 9). Although
the BPMN standard document deals with the semantics of the BPMN elements
by defining “how the graphical elements will interact with each other, including
conditional interactions based on attributes that create behavioral variations of
the elements” [15, p.2], this part of the specification leaves numerous questions
open. For example, most attributes do not become visible in the graphical rep-
resentation, although their values definitely influence the behavioral meaning
of what is graphically displayed. The rules we define for each BPMN construct
make all the attributes explicit which contribute to determining the semantics
of the construct. This needs a framework with a sufficiently rich notion of state
to make the needed attribute data available.3

Due to its natural-language character the BPMN standard document is also
not free of a certain number of ambiguities. We identify such issues and show
how they can be handled in the model we build. A summary of these issues is
listed in Sect. 8.1.

For each BPMN construct we describe its behavioral meaning at a high level of
abstraction and piecemeal, by dedicated transition rules. This facilitates a quick
and easy reuse of the specifications when the standard definitions are completed
(to fill in missing stipulations) or changed or extended. We suggest to put this
aspect to use to easen the work on the planned extension of BPMN to BPMN
2.0 and to adapt the descriptions to definitions in other standards. For example,
most of the rules defined in this paper or some simple variations thereof also
capture the meaning of the corresponding concepts in UML 2.0 (see [38] for a
concrete comparison based upon the workflow patterns in [37]). We forsee that
our platform and machine independent framework can be adopted to realize the
hope expressed in [37, p.25] : “Since the Activity Diagram and Business Process
Diagram are very similar and are views for the same metamodel, it is possible
that they will converge in the future”.

A revised version BPMN 1.1 [16] of BPMN 1.0 [15] has been published after
the bulk of this work had been done. The changes are minor and do not affect
the framework we develop in this paper. They imply different instantiations of
some of the abstractions in our BPMN 1.0 model. We therefore stick here to a
model for [15].

Rational for the Method. We use the Abstract State Machine (ASM)
method [12] because it directly supports the description goals outlined above:
to provide for the BPMN standard a succinct, abstract and operational, easily
extendable semantical model for the business process practitioner, a model he
can understand directly and use to reason about his design and to hand it over
to a software engineer as a binding and clear specification for a reliable and

3 The lack of state representation in BPMN is identified also in [28] as a deficit of the
notation.

62 E. Börger and B. Thalheim

justifiably correct implementation. For the sake of easy understandability we
paraphrase the formal ASM rules by verbal explanations, adopting Knuth’s lit-
erate programming [26] idea to the development of specifications. Asynchronous
(also called distributed) ASMs combine most general state (capturing hetero-
geneous data structures) with true concurrency, thus avoiding the well-known
problems of Petri nets when it comes to describe complex state or non-local be-
havior in a distributed context (see in particular the detailed analysis in [17,36]
of the problems with mapping BPMN diagrams respectively the analogous UML
2.0 activity diagrams to Petri nets).

One of the practical advantages of the ASM method derives from the fact
that (asynchronous) ASMs can be operationally understood as natural extension
of (locally synchronous and globally asynchronous [27]) Finite State Machines
(namely FSMs working over abstract data). Therefore the workflow practitioner,
supported by the common graphical design tools for FSM-like notations, can
understand and use ASMs correctly as (concurrent) pseudo-code whenever there
is need of an exact reference model for discussing semantically relevant issues.
There is no need for any special training, besides the professional experience in
process-oriented thinking. For the sake of completeness we nevertheless sketch
the basic ASM concepts and our notation in an appendix, see Sect. 10.

Since ASM descriptions support an intuitive operational understanding at
both high and lower levels of abstraction, the software developer can use them
to introduce in a rigorously documentable and checkable way the crucial de-
sign decisions when implementing the abstract ASM models. Technically this is
achieved using the ASM refinement concept defined in [8]. One can exploit this
to explain how general BPMN concepts are (intended to be) implemented, e.g.
at the BPEL or even lower level. In this way the ASM method allows one to
add semantical precision to the comparison and evaluation of the capabilities of
different tools, as undertaken in terms of natural language descriptions for a set
of workflow patterns proposed for this purpose in [37,33].

The ASM method allows one to view interaction partners as rule executing
agents (read: threads executing specific activities), which are subject to a sepa-
rately specifiable cooperation discipline in distributed (asynchronous) runs. This
supports a rigorous analysis of scheduling and concurrency mechanisms, also in
connection with concerns about resources and workload balancing, issues which
are crucial for (the implementation of) business processes. In this paper we will
deal with multi-agent aspects only were process interaction plays a role for the
behavior of a BPMN process. This is essentially via communication (messages
between pools and events) or shared data, which can be represented in the ASM
framework by monitored or shared locations. Therefore due to the limited sup-
port of interaction patterns in the current BPMN standard,4 the descriptions
in this paper will be mainly in terms of one process instance at a time, how
it reacts to messages and events determined by and to input coming from the

4 The BPMN standard document speaks of “different points of view” of one process
by its participants, whose interactions “are defined as a sequence of activities that
represent the message exchange patterns betweeen the entities involved” [15, p.11].

A Method for Verifiable and Validatable Business Process Modeling 63

environment (read: other participants, also called agents). The ASM framework
supports more general interaction schemes (see for example [4]).

Structure of the Paper. In Sect. 2 we define the pattern for describing the
semantics of workflow constructs and instantiate it in Sect. 4- 6 to define the se-
mantics of BPMN gateways, events and activities, using some auxiliary concepts
explained in Sect. 3. Appendix 9 summarizes the resulting BPMN interpreter.
We discuss directly related work in Sect. 7 and suggest in Sect. 8 some further
applications of our framework. Appendix 10 gives some information on the ASM
method we use throughout.

Our target reader is either knowledgeable about BPMN and wants to dig
into (some of) its semantical intricacies, or is somebody who with the standard
document at his hand tries to get a firm grasp of the semantical content of the
standard definitions. This is not an introduction for a beginner.

2 The Scheme for Workflow Interpreter Rules

Data and control, the two basic computational elements, are both present in
current business process models, although in the so-called workflow perspective
the focus is on control (read: execution order) structures. In numerous business
process notations this focus results in leaving the underlying data or resource
features either completely undefined or only partly or loosely specified, so that
the need is felt, when dealing with real-life business process workflows, to speak
besides control patterns [37,33] separately also about data [31] and resource [32]
patterns (see also [40]). The notion of abstract state coming with ASMs supports
to not simply neglect data or resources when speaking about control, but to
tailor their specification to the needed degree of detail, hiding what is considered
as irrelevant at the intended level of abstraction but showing explicitly what
is needed. For example a product catalogue is typically shared by numerous
applications; it is used and manipulated by various processes, which may even
be spread within one company over different and possibly also geographically
separated organizational units with different access rights. In such a scenario
not only the underlying data, but also their distribution and accessability within
a given structure may be of importance and in need to be addressed explicitly
by a business process description. A similar remark applies to the consideration
of resources in a business process description. However, since in many business
process notations and in particular in BPMN the consideration of resources plays
no or only a minor role, we mostly disregard them here, although the framework
we develop allows one to include such features.

Therefore the attention in this paper is largely reduced to control features.
Business process control can be both internal and external, as usual in modern
computing. The most common forms of internal, typically process-defined control
encountered in workflows are sequencing, iteration, subprocess management and
exception handling. They are dealt with explicitly in almost all business process
notations, including BPMN, so that we will describe them in Sect. 3 as instances

64 E. Börger and B. Thalheim

of the general workflow rule scheme defined below. In doing this we let the control
stand out explicitly but abstractly, separating it from any form of partly data-
related control.5

External control comes through input, e.g. messages, timers, trigger signals
or conditions. This is about so-called monitored locations6, i.e. variables or more
generally elements of memory which are only read (not written) by the receiving
agent and whose values are determined by the environment, which can be viewed
as another agent. In business process notations, external control is typically dealt
with by speaking of events, which we therefore incorporate into the workflow
scheme below, together with resource, data and internal control features.

To directly support the widely used flowcharting techniques in dealing with
business process models, we abstractly represent any business process as a graph
of nodes connected by arcs, in the mathematical sense of the term. The nodes
represent the workflow objects, where activities are performed depending on
resources being available, data or control conditions to be true and events to
happen, as described by transition rules associated to nodes. These rules define
the meaning of workflow constructs. The arcs support to define the graph traver-
sal, i.e. the order in which the workflow objects are visited for the execution of
the associated rules.

For the description we use without further mentioning the usual graph-
theoretic concepts, for example source(arc), target(arc) for source and target
node of an arc, pred(node) for the (possibly ordered) set of source nodes of arcs
that have the given node as target node, inArc(node) for the set of arcs with
node as target node, similarly succ(node) for the (possibly ordered) set of target
nodes of arcs that have the given node as source node, outArc(node) for the set
of arcs with node as source node, etc.

In general, in a given state more than one rule could be executable, even
at one node. We call a node Enabled in a state (not to be confused with the
omonymous Enabledness predicate for arcs) if at least one of its associated rules
is Fireable at this node in this state. In many applications the fireability of a rule
by an agent also depends on the (degree of) availability of the needed resources,
an aspect that is included into the scheme we formulate below.

The abstract scheduling mechanism to choose at each moment an enabled node
and at the chosen node a fireable transition can be expressed by two here not fur-
thermore specified selection functions, say selectNode and selectWorkflowTransition
defined over the sets Node of nodes and WorkflowTransition of business process
transition rules. These functions, whose use is supported by the notion of ASM
(see Sect. 10), determine how to choose an enabled node respectively a fireable
workflow transition at such a node for its execution.

5 Counting the number of enabling tokens or considering tokens of different types
in coloured Petri nets are examples of such mixed concepts of control; they are
instantiations of the abstract scheme we formulate below.

6 Concerning external control, most of what we say about monitored locations also
holds for the shared locations, whose values can be determined by both its agent and
an environment. See the ASM terminology explained in Sect. 10.

A Method for Verifiable and Validatable Business Process Modeling 65

WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition ({r | r ∈ WorkflowTransition and
Fireable(r ,node)})

rule

Thus for every workflow construct associated to a node, its behavioral mean-
ing is expressed by a guarded transition rule WorkflowTransition(node) ∈
WorkflowTransition of the general form defined below. Every such rule states
upon which events and under which further conditions—typically on the control
flow, the underlying data and the availability of resources—the rule can fire to
execute the following actions:

perform specific operations on the underlying data (‘how to change the in-
ternal state’) and control (‘where to proceed’),
possibly trigger new events (besides consuming the triggering ones),
operate on the resource space to handle (take possession of or release) re-
sources.

In the scheme, the events and conditions in question remain abstract, the same
as the operations that are performed. They can be instantiated by further de-
tailing the guards (expressions) respectively the submachines for the description
of concrete workflow transitions.7

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

WorkflowTransition(node) represents an abstract state machine, in fact
a scheme (sometimes also called a pattern) for a set of concrete machines that
can be obtained by further specifying the guards and the submachines. In the
next section we illustrate such an instantiation process to define a high-level
BPMN interpreter. For explicit instantiations of the workflow patterns in [37,33]
from a few ASM workflow patterns see [10].

3 Framework for BPMN Execution Model

In this section we instantiate WorkflowTransitionInterpreter to a
schema for an execution model for BPMN diagrams. It is based upon the stan-
dard for the Business Process Modeling Notation (BPMN) as defined in [15]. In
7 We remind the reader that by the synchronous parallelism of single-agent ASMs, in

each step all applicable rules are executed simultaneously, starting from the same
state to produce together the next state.

66 E. Börger and B. Thalheim

some cases we first formulate a general understanding of the concept in question
and then explain how it can be adapted to the specific use as defined in BPMN.
This is not to replace the BPMN standard, but only to provide a companion to
it that explains the intended execution semantics in a rigorous high-level way
and points out where attention has to be paid to the possibility of different inter-
pretations of the standard document, due to ambiguities or underspecification.
We mention here only those parts of the standard document that directly refer
to the semantic behavioral interpretation of the constructs under investigation.
In particular, besides what is explained in Sect. 3.1 we use numerous elements
of the metamodel without further explanations, refering for their definition to
the standard document.

3.1 Business Process Diagram Elements

We summarize here some of the elements which are common to every business
process diagram: flow objects of various types residing at nodes connected by
arcs, tokens used to represent control flow, a best practice normal form for such
diagrams, etc. In a full formalization one would have to present these elements
as part of a BPMN metamodel.

The graph interpretation graph(process) of a BPMN business process diagram
specifies the nodes of this diagram as standing for three types of so-called flow
objects, namely activities, events and gateways. We represent them as elements
of three disjoint sets:

Node = Activity ∪ Event ∪ Gateway

To define the behavioral meaning of each BPMN flow object one may find in
a node, we instantiate in the WorkflowTransition(node) scheme the guard
expressions and the submachines to capture the verbal explanations produced
in the standard document for each of the three flow object types. Each object
type needs a specific instantiation type on can roughly describe as follows.

To interpret the elements of the set Event we have to instantiate in partic-
ular the event conditions in the guard and the event operations in the body
of WorkflowTransition(node). The instantiation of EventCond(node)
interprets the cause (‘trigger’) of an event happening at the node; the in-
stantiation of EventOp(node) interpretes the result (‘impact’) of the events
(on producing other events and consuming the given ones) at this node.
The interpretation of the elements of the set Gateway involves in-
stantiating the guard expressions CtlCond(node) and the submachines
CtlOp(node) of WorkflowTransition(node). Accompanying instantia-
tions of DataCond(node) and DataOp(node) reflect what is needed in cases
where also state information is involved to determine how the gateway con-
trols the convergence or divergence of the otherwise sequential control flow.
The interpretation of the elements of Activity involves instantiating the
guard expressions DataCond(node) and the submachines DataOp(node) of
WorkflowTransition(node). For so-called non-atomic activities, which

A Method for Verifiable and Validatable Business Process Modeling 67

involve subprocesses and possibly iterations over them, we will see a simulta-
neous instantiation also of the CtlCond(node) guards and of the submachines
CtlOp(node) to determine the next activity.

Thus an instance of WorkflowTransitionInterpreter for BPMN di-
agrams is defined by instantiating a) the particular underlying scheduling
mechanism (i.e. the functions selectNode and selectWorkflowTransition) and b)
WorkflowTransition(node) for each type of node. The result of such an
instantiation yields a BPMN interpreter pattern, which can be instantiated to
an interpreter for a particular business process diagram by further instantiat-
ing the WorkflowTransition(node) scheme for each concrete node of the
diagram. This implies instantiations of the diagram related abstractions used
by WorkflowTransition(node), as for example various attribute values. We
deal with such items below as location instances, the way it is known from the
object-oriented programming paradigm.

Arcs. The arcs as classified into three groups, standing for the sequence flow
(control flow), the message flow (data flow through monitored locations) and the
associations.

The sequence flow arcs, indicating the order in which activities are per-
formed in a process, will be interpreted by instantiating CtlCond(node) in
the guard and CtlOp(node) in the body of BPMN instances of rules of form
WorkflowTransition(node).

The message flow arcs define the senders and receivers of messages. In the
ASM framework incoming messages represent the content of dedicated monitored
locations. Sender and receiver are called participants in BPMN, in the ASM
framework agents with message writing respectively reading rights.

Arcs representing associations are used for various purposes which in this
paper can be mostly disregarded (except for their use for compensation discussed
below)8.

8 Association arcs in BPMN may associate semantically irrelevant additional textual
or graphical information on “non-Flow Objects” to flow objects, for example so-
called artifacts that provide non-functional information and “do not directly affect
the execution of the Process” [15, Sect.11.12 p.182]. Association arcs may also asso-
ciate processes such as compensation handlers. A typical example is a compensation
intermediate event that “does not have an outgoing Sequence Flow, but instead has
an outgoing directed Association” (ibid. p.133) to the target compensation activ-
ity, which is considered as being “outside the Normal Flow of the Process” (ibid.
p.124). Therefore its execution effect can be disregarded for describing the semantics
of BPMN—except the “flow from an Intermediate Event attached to the boundary
of an activity, until the flow merges back into the Normal Flow” (ibid. p.182), which
will be discussed below. Association arcs may also represent the data flow among
processes, namely when they are used to describe conditions or operations on data
that are involved in the activity or control flow described by the underlying flow ob-
ject, as for example input/output associated to an activity (see Sect. 6). In the ASM
framework these arcs point to monitored resp. derived locations, i.e. locations whose
value is only read but not written resp. defined by a given scheme (see Sect. 10).

68 E. Börger and B. Thalheim

In the following, unless otherwise stated, by arc we always mean a sequence
flow arc and use Arc to denote the set of these arcs. Many nodes in a BPMN
diagram have only (at most) one incoming and (at most) one outgoing arc (see
the BPMN best practice normal form below). In such cases, if from the context
the node in question is clear, we write in resp. out instead of inArc(node) = {in}
resp. outArc(node) = {out}.

3.2 Token-Based Sequence Flow Interpretation

We mathematically represent the token-based BPMN interpretation of control
flow [15, p.35] (sequence flow in BPMN terminology) by associating tokens—
elements of a set Token—to arcs, using a dynamic function token(arc).9 A token
is characterized by the process ID of the process instance pi to which it belongs
(via its creation at the start of the process instance) so that one can distinguish
tokens belonging to different instances of one process p. Thus we write tokenpi

to represent the current token marking in the process diagram instance of the
process instance pi a token belongs to, so that tokenpi(arc) denotes the multiset
of tokens belonging to process instance pi and currently residing on arc. Usually
we suppress the parameter pi , assuming that it is clear from the context.10

token : Arc → Multiset(Token)

In the token based approach to control, for a rule at a target node of incoming
arcs to become fireable some (maybe all) arcs must be enabled by tokens being
available at the arcs. This condition is usually required to be an atomic quantity
formula stating that the number of tokens belonging to one process instance
pi and currently associated to in (read: the cardinality of tokenpi(in), denoted
| tokenpi(in) |) is at least the quantity inQty(in) required for incoming tokens
at this arc.11 A different relation could be required, which would come up to a
different specification of the predicate Enabled .

Enabled(in) = (| tokenpi(in) |≥ inQty(in) forsome pi)

Correspondingly the control operation CtlOp of a workflow usually consists
of two parts, one describing how many tokens are Consumed on which incoming
arcs and one describing how many tokens are Produced on which outgoing

9 We deliberately avoid introducing yet another category of graph items, like the so-
called places in Petri nets, whose only role would be to hold these tokens.

10 This treatment is in accordance with the fact that in many applications only one
type of unit control token is considered, as for example in standard Petri nets. In a
previous version of this paper we considered the possibility to parameterize tokens
by an additional Type parameter, like the colours introduced for tokens in coloured
Petri nets. However, this leads to add a data structure role to tokens whose intended
BPMN use is to describe only “how Sequence Flow proceeds within a Process” [15,
p.35].

11 The function inQty generalizes the startQuantity attribute for activities in the
BPMN standard.

A Method for Verifiable and Validatable Business Process Modeling 69

arcs, indicated by using an analogous abstract function outQty. We use macros
to encapsulate the details. They are defined first for consuming resp. producing
tokens on a given arc and then generalized for producing or consuming tokens
on a given set of arcs.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))
Pass(t , in, out) =

Consume(t , in)
Produce(t , out)

In various places the BPMN standard document alludes to structural relations
between the consumed incoming and the produced outgoing tokens. To express
this we use an abstract function firingToken(A), which is assumed to select for
each element a of an ordered set A of incoming arcs tokens from tokenpi(a)
that enable a, all belonging to the same process instance pi and ready to
be Consumed. For the sake of exposition we make the usual assumption that
inQty(in) = 1, so that we can use the following sequence notation:

firingToken([a1, . . . , an]) = [t1, . . . , tn]

to denote that ti is the token selected to be fired on arc ai . We write
firingToken(in) = t instead of firingToken({in}) = [t].

If one considers, as seems to be very often the case, only (multiple occurrences
of) indistinguishable tokens, all belonging to one process instance, instead of
mentioning the single tokens one can simplify the notation by parameterizing
the macros only by the arcs:

Consume(in) = Delete(inQty(in), token(in))
Produce(out) = Insert(outQty(out), token(out))
ConsumeAll(X) = forall x ∈ X Consume(x)
ProduceAll(Y) = forall y ∈ Y Produce(y)

Remark. This use of macros allows one to adapt the abstract token model to
different instantiations by a concrete token model. For example, if a token is
defined by two attributes, namely the process instance pi it belongs to and the
arc where it is pos itioned, as seems to be popular in implementations, then it
suffices to refine the macro for Passing a token t from in to out by updating the
second token component, namely from its current pos ition value in to its new
value out :

Pass(t , in, out) = (pos(t) := out)

The use of abstract Delete and Insert operations instead of directly updating
token(a, t) serves to make the macros usable in a concurrent context, where
multiple agents may want to simultaneously operate on the tokens on an arc.
Note that it is also consistent with the special case that in a transition with
both Delete(in, t) and Insert(out , t) one may have in = out , so that the
two operations are not considered as inconsistent, but their cumulative effect is
considered.

70 E. Börger and B. Thalheim

Four Instantiation Levels. Summarizing the preceding discussion one sees
that the structure of our model provides four levels of abstraction to sepa-
rate different concerns, among them the distinction between process and process
instances.

At the first level, in WorkflowTransitionInterpreter, scheduling is
separated (via functions selectNode and selectWorkflowTransition) from behavior
(via rules in WorkflowTransition).
At the second level, different constructs are behaviorally separated from each
other by defining a machine pattern for each construct type—here gateways,
events and activities—instantiating appropriately the components of the ab-
stract machine WorkflowTransition(node) as intended for each type.
At the third level, a concrete business process is defined by instantiating the
per node globally defined rule pattern WorkflowTransition(node) for
each concrete diagram node.
At the fourth level, instances of a concrete business process are defined by
instantiating the attributes and the token function as instance locations
belonging to the process instance. In object-oriented programming terms one
can explain the last two steps as adding to static class locations (the global
process attributes) dynamic instance locations (the attribute instantiations).

BPMN Token Model. The BPMN standard document uses a more elaborate
concept of tokens, though it claims to do this only “to facilitate the discussion”
of “how Sequence Flow proceeds within a Process”. The main idea is expressed
as follows:

The behavior of the Process can be described by tracking the path(s)
of the Token through the Process. A Token will have a unique identity,
called a TokenId set, that can be used to distinguish multiple Tokens
that may exist because of concurrent Process instances or the dividing
of the Token for parallel processing within a single Process instance. The
parallel dividing of a Token creates a lower level of the TokenId set. The
set of all levels of TokenId will identify a Token. [15, p.35]

The standard document imposes no further conditions on how to realize this to-
ken traceability at gateways, activities, etc., but uses it for example for the trac-
ing of structured elements in the mapping from BPMN to BPEL (op.cit.pg.192
sqq.). For the sake of completeness we illustrate here one simple structure-based
formalization of the idea of tokens as a hierarchy of sets at different levels, which
enables the designer to convey non-local information between gateways.12

The goal is to directly reflect the use of tokens for tracing the sequence flow
through starting, splitting, joining, calling (or returning from), iterating, end-
ing processes, instantiating multiple instances of an activity or otherwise relating

12 For another possibility one can use in dynamic contexts, where there is no possibility
to refer to static structural net information, see the remark in Sect. 4 on relating
OR-split and OR-joins.

A Method for Verifiable and Validatable Business Process Modeling 71

different computation paths. At the first level one has (a finite multiset of oc-
currences of) say one basic token origin(p), containing among other data the
information on the process ID of the process p upon whose start the token has
been created. These tokens are simply passed at all nodes with only one incoming
and one outgoing arc (see the remark on tokens at intermediate events at the end
of Sect. 5). When it comes to “the dividing of the Token for parallel processing
within a single Process instance”, the considered (multiset of occurrences of the)
token t is Consumed and Produces the (multiset of the desired number of
occurrences of) next-level tokens par(t , p(i),m), one for each of the m parallel
processes p(i) in question for 0 < i < m . When (the considered number of
occurrences of) these tokens arrive on the arcs leading to the associated (if any)
join node, (the multisets of) their occurrences are Consumed and the (desired
number of occurrences of the) parent token t is (re-) Produced.

In the same manner one can also distinguish tokens andSplitToken(t , i ,m)
for AND-split gateways, orSplitToken(t , i ,m) for OR-split gateways,
multInstToken(t , i)ormultInstToken(t , i ,m) formulti-instancesofa (sub)process,
etc. One can also parameterize the tokens by the nodes where they are produced
or let m be a dynamic function of the parameters of the considered diagram node
(gateway instance). Using a tree structure for the representation of such token
functions allows the workflow designer to define in a simple, intuitive and precise
way any desired notion of “parallel” paths. It also supports a computationally
inexpensive definition of a process to be Completed when all its tokens have been
consumed, since the relation between a token and the process ID of the process p
where it has been created is given by the notion of origin(p) in the token set T (p).

3.3 BPMN Best Practice Normal Form

For purely expository purposes, but without loss of generality, we assume BPMN
graphs to be in (or to have been equivalently transformed into) the following
normal form, in [15] called ‘modeling covenience’:

BPMN Best Practice Normal Form. [15, p.69] Disregarding arcs leading to
exception and compensation nodes, only gateways have multiple incoming or
multiple outgoing arcs. Except so-called complex gateways, gateways never
have both multiple incoming and multiple outgoing arcs.

Justification. We outline the proof idea for some characteristic cases; the re-
maining cases will be considered at the places where the normal form is used
to shorten the descriptions. An AND (also called conjunctive or parallel) gate-
way with n incoming and m outgoing arcs can be transformed into a standard
equivalent graph consisting of a parallel AND-Join gateway with n incoming
and one outgoing arc, which is incoming arc to a parallel AND-Split gateway
with m outgoing arcs. A so-called uncontrolled node with n incoming and m
outgoing arcs can be shown to be standard equivalent to an OR-Join gateway
with n incoming arcs connected by one outgoing arc to a new node which is
connected to an AND-Split gateway with m outgoing arcs. If one is interested

72 E. Börger and B. Thalheim

in a completely carried out formal description of the behavior of all BPMN con-
structs, one has to add to the behavioral descriptions we give in this paper a
description of the transformation of arbitrary BPMN diagrams into diagrams in
BPMN Best Practice Normal Form. This is a simple exercise.

4 BPMN Execution Model for Gateway Nodes

Gateways are used to describe the convergence (merging) or divergence (split-
ting) of control flow in the sense that tokens can ‘be merged together on input
and/or split apart on output’ [15, p.68]. Both merging and splitting come in
BPMN in two forms, which are considered to be related to the propositional
operators and and or, namely

to create parallel actions or to synchronize multiple actions,
to select (one or more) among some alternative actions.

For the conjunctive case the BPMN terminology is ‘forking’ (‘dividing of a
path into two or more parallel paths, also known as an AND Split’) [15, p.110] re-
spectively ‘parallel joining’ (AND-Join). For the disjunctive case the BPMN stan-
dard distinguishes two forms of split, depending on whether the decision among
the alternatives is exclusive (called XOR-Split) or not (called OR-Split, this case
is also called ‘inclusive’). For the exclusive case a further distinction is made de-
pending on whether the decision is ‘data-based’ or ‘event-based’. These distinc-
tions are captured in the instantiations of WorkflowTransition(node) for
gateway nodes below by corresponding EventCond(node) and DataCond(node)
guards, which represent these further gateway fireability conditions, besides the
mere sequence flow enabledness.

The BPMN standard views gateways as ‘a collection of Gates ’ that are as-
sociated one-to-one to outgoing sequence flow arcs of the gateway, ‘one Gate
for each outgoing Sequence Flow of the Gateway’ [15, p.68]. The sequence flow
arcs are required to come with an expression that describes the condition un-
der which the corresponding gate can be taken.13 Since this distinction is not
needed for a description of the gateway behavior, we abstract from it in our
model and represent gates simply by the outgoing sequence flow arcs to which
they are associated. Nevertheless, for the sake of a clear exposition of the dif-
ferent split/merge features, we start from the BPMN best practice normal form
assumption whereby each gateway performs only one of the two possible func-
tions, either divergence or convergence of multiple sequence flow. For the special
case of gateways without incoming arcs or without outgoing arcs, which play
the role of start or end events, see the remarks at the end of the section on
start and end events. The gateway pattern definition we present in Sect. 4.6 for
the so-called complex gates (combinations of simple decision/merge) makes no
normal form assumption, so that its scheme shows ho to describe gateways that
13 The merge behavior of an OR gateway is represented by having multiple incoming

sequence flow, as formalized by CtlCond below, but only one gate (with its associated
sequence flow condition set to None, realizing that the condition is always true).

A Method for Verifiable and Validatable Business Process Modeling 73

are not in normal form. From a definition of the complex case one can easily
derive a definition of the simple cases, as we will see below.

4.1 AND-Split (Fork) Gateway Nodes

By the normal form assumption, every AND-split gateway node has one incom-
ing arc in and finitely many outgoing arcs. Therefore CtlCond(node) is simply
Enabled(in). CtlOp(node) means to Consume(t , in) for some enabling token t
chosen from token(in) and to Produce on each outgoing arc o the (required
number of) andSplitToken(t , o) (belonging to the same process instance as t),
which in the case of unit tokens are simply occurences of t .

In BPMN DataOp(node) captures multiple assignments that may be ‘per-
formed when the Gate is selected’ [15, Table 9.30 p.86] (read: when the associated
rule is fired). We denote these assignments by sets assignments(o) associated to
the outgoing arcs o (read: gates).

Thus the WorkflowTransition(node) scheme is instantiated for any and-
split (fork) gateway node as follows:

AndSplitGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = Enabled(in)
CtlOp(node) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(andSplitToken(t , o), o) | o ∈ outArc(node)})

DataOp(node) = //performed for each selected gate
forall o ∈ outArc(node)
forall i ∈ assignments(o) Assign(toi , fromi)

This is still a scheme, since for each particular diagram node for example the
source and target expressions toi , fromi for the associated assignments have still
to be instantiated.

4.2 AND-Join (Synchronization) Gateway Nodes

By the normal form assumption, every AND-join gateway node has finitely many
incoming and one outgoing arc. Each incoming arc is required to be Enabled , so
that CtlCond(node) is simply the conjunction of these enabledness conditions.
CtlOp(node) means to Consume firing tokens (in the requested quantity) from
all incoming arcs and to Produce (the considered number of) andJoinTokens on
the outgoing arc, whose values depend on the incoming tokens. DataOp(node)
captures multiple assignments as in the case of AND-split gateways.14

14 If our understanding of the BPMN standard document is correct, the standard does
not forsee event-based or data-based versions for AND-join transitions, so that the
conditions EventCond(node) andDataCond(node) and the EventOp can be skipped
(or set to true resp. skip for AND-joins).

74 E. Börger and B. Thalheim

Remark. If AND-join nodes n ′ are structural companions of preceding AND-
split nodes n, the tokens tj = andSplitToken(t , oj) produced at the outgoing arc
oj of n will be consumed at the corresponding arc inj incoming n ′, so that at the
arc outgoing n ′ the original token t will be produced. Such a structured relation
between splits and joins is however not prescribed by the BPMN standard, so
that for the standard the functions andSplitToken and andJoinToken remain ab-
stract (read: not furthermore specified, i.e. freely interpretable by every standard
conform implementation).

AndJoinGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = forall in ∈ inArc(node) Enabled(in)
CtlOp(node) =

let [in1, . . . , inn] = inArc(node)
let [t1, . . . , tn] = firingToken(inArc(node))

ConsumeAll({(tj , inj)) | 1 ≤ j ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

4.3 OR-Split Gateway Nodes

An OR-split node is structurally similar to an AND-split node in the sense that
by the normal form assumption it has one incoming and finitely many outgoing
arcs, but semantically it is different since instead of producing tokens on every
outgoing arc, this may happen only on a subset of them.

The chosen alternative depends on certain conditions OrSplitCond(o) to be
satisfied that are associated to outgoing arcs o. In BPMN the choice among
these alternatives is based either upon process-data-involving GateCond itions
that evaluate to true (data-based case) or upon GateEvents that are Triggered
(event-based case). Further variants considered in BPMN depend upon whether
at each moment exactly one alternative is chosen (the exclusive case) or whether
more than one of the alternative paths can be taken (so-called inclusive case).

We formulate the choice among the alternatives by an abstract function
selectProduce(node), which is constrained to select at each invocation a non-empty
subset of arcs outgoing node that satisfy the OrSplitCond ition. If there is no such
set, the rule cannot be fired.

Constraints for selectProduce

selectProduce(node) �= ∅
selectProduce(node) ⊆ {out ∈ outArc(node) | OrSplitCond(out)}15

This leads to the following instantiation of the WorkflowTransition(node)
scheme for or-split gateway nodes. The involvement of process data or gate
15 Instead of requiring this constraint once and for all for each such selection

function, one could include the condition as part of DataCond(node, O) resp.
EventCond(node, O) in the guard of OrSplitGateTransition.

A Method for Verifiable and Validatable Business Process Modeling 75

events for the decision upon the alternatives is formalized by letting DataCond
and EventCond in the rule guard and their related operations in the rule body
depend on the parameter O for the chosen set of alternatives. As done for AND-
split nodes, we use an abstract function orSplitToken to describe the tokens
Produced on the outgoing arc; in general their values depend on the incoming
tokens.

OrSplitGateTransition(node) =
let O = selectProduce(node) in WorkflowTransition(node,O)

where
CtlCond(node) = Enabled(in)
CtlOp(node,O) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(orSplitToken(t , o), o) | o ∈ O})

DataOp(node,O) = forall o ∈ O forall i ∈ assignments(o)
Assign(toi , fromi)

From OrSplitGateTransition also AndSplitGateTransition can be
defined by requiring the selection function to select the full set of all outgoing
arcs.

4.4 OR-Join Gateway Nodes

As for AND-join gateway nodes, by the normal form assumption, every OR-
join gateway node has finitely many incoming and one outgoing arc. Before
proceeding to deal with the different cases the BPMN standard names explicitly
(exclusive and data-based or event-based inclusive OR), we formulate a general
scheme from which the BPMN instances can be derived.

For OR-join nodes one has to specify what happens if the enabledness condi-
tion is satisfied simultaneously for more than one incoming arc. Should all the
enabling tokens from all enabled incoming arcs be consumed? Or only tokens
from one enabled arc? Or from some but maybe not all of them? Furthermore,
where should the decision about this be made, locally by the transition rule or
globally by the scheduler which chooses the combination? Or should assumptions
on the runs be made so that undesired combinations are excluded (or proved to
be impossible for a specific business process)? More importantly one also has to
clarify whether firing should wait for other incoming arcs to get enabled and in
case for which ones.

To express the choice of incoming arcs where tokens are consumed we use an
abstract selection function selectConsume : it is required to select a non-empty set
of enabled incoming arcs, whose enabling tokens are consumed in one transition,
if there are some enabled incoming arcs; otherwise it is considered to yield the
empty set for the given argument (so that the rule which is governed by the selec-
tion via the CtlCond(node) is not fireable). In this way we explicitly separate the
two distinct features considered in the literature for OR-joins: the enabledness

76 E. Börger and B. Thalheim

condition for each selected arc and the synchronization condition that the se-
lected arcs are exactly the ones to synchronize. The convential token constraints
are represented as part of the control condition in the OrJoinGateTransition

rule below, namely that the selected arcs are all enabled and that there is at
least one enabled arc. What is disputed in the literature and not specified in the
BPMN standard is the synchronization constraint for selectConsume functions.
Therefore we formulate the transition rule for an abstract OR-join semantics,
which leaves the various synchronization options open as additional constraints
to be put on selectConsume . As a result selectConsume(node) plays the role of an
interface for triggering for a set of to-be-synchronized incoming arcs the execu-
tion of the rule at the given node.

This leads to the following instantiation of the WorkflowTransition(node)
scheme for or-join gateway nodes. To abstractly describe the tokens Produced
on the outgoing arc we use a function orJoinToken whose values depend on the
tokens on the selected incoming arcs.

OrJoinGateTransition(node) =
let I = selectConsume(node) in WorkflowTransition(node, I)

where
CtlCond(node, I) = (I �= ∅ and forall j ∈ I Enabled(j))
CtlOp(node, I) =

Produce(orJoinToken(firingToken(I)), out)
ConsumeAll({(tj , inj) | 1 ≤ j ≤ n}) where

[t1, . . . , tn] = firingToken(I)
[in1, . . . , inn] = I

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

NB. Clearly AndJoinGateTransition, in BPMN called the merge use of
an AND-gateway, can be defined as a special case of the merge use of an OR-
gateway OrJoinGateTransition, namely by requiring the selection function
to always yield either the empty set or the set of all incoming arcs.

Remark on Relating OR-Split and OR-Joins. The discussion of “prob-
lems with OR-joins” has received much attention in the literature, in particular
in connection with EPCs (Event driven Process Chains) and Petri nets (see for
example [25,42] and the references there). In fact, to know how to define the
choice function selectConsume is a critical issue also for (implementations of) the
BPMN standard. The BPMN standard document seems to foresee that the func-
tion is dynamic so that it does not depend only on the (static) diagram structure.
In fact the following is required: “Process flow SHALL continue when the sig-
nals (Tokens) arrive from all of the incoming Sequence Flow that are expecting a
signal based on the upstream structure of the Process . . . Some of the incoming
Sequence Flow will not have signals and the pattern of which Sequence Flow will
have signals may change for different instantiations of the Process.” [15, p.80]
Generally it is claimed in the literature that the “non-locality leads to serious
problems when the formal semantics of the OR-join has to be defined” [24, p.3].

A Method for Verifiable and Validatable Business Process Modeling 77

The discussion of and the importance attached to these “problems” in the liter-
ature is partly influenced by a weakness of the underlying Petri-net computation
model, which has well-known problems when dealing with non-local (in partic-
ular if dynamic) properties.16 In reality the issue is more a question of process
design style, where modeling and verification of desired process behavior go hand
in hand via modular (componentwise) definitions and reasoning schemes, which
are not in need of imposing static structural conditions (see [5]). It is only to
a minor extent a question of defining the semantics of OR-joins. In fact, in the
ASM framework one can succinctly describe various ways to dynamically relate
the tokens produced by an OR-Split node to the ones consumed by an associated
OR-Join node. See [14].

4.5 BPMN Instances of Gateway Rules

In BPMN gateways are classified into exclusive (XOR), inclusive (OR), parallel
(AND) and complex. The case of complex gateways is treated below.

An AND gateway of BPMN can be used in two ways. When it is used ‘to
create parallel flow’, it has the behavior of AndSplitGateTransition, where
each outgoing arc represents a gate (without loss of generality we assume the
BPMN Best Practice Normal Form, i.e. a gateway with one incoming arc). The
so-called merge use of the AND gateway of BPMN ‘to synchronize parallel flow’
has the behavior of AndJoinGateTransition.

The data-based XOR and the OR gateway of BPMN, when ‘acting only as a
Merge’, both have only one gate without an associated GateCond or GateEvent ;
the event-based XOR is forbidden by the standard to act only as a Merge.
Thus those two gateway uses are an instance of OrJoinGateTransition where
selectConsume is restricted to yield either an empty set (in which case the rule
cannot fire) or

for XOR a singleton set,
for OR a subset of the incoming arcs with associated tokens ‘that have been
produced upstream’ [15, p.80]17.

This satisfies the standard document requirement for XOR that in case of
multiple incoming flow, the incoming flow which in a step of the gateway has
not be chosen ‘will be used to continue the flow of the Process (as if there were
no Gateway)’; similarly for OR [15, p.75].

When acting as a split into alternatives, the XOR (in its two versions data-
based and event-based) and the OR gateway of BPMN are both an instance of
OrSplitGateTransition where selectProduce is restricted to yield one of the
following:

For the data-based XOR a singleton set consisting of the first out ∈
outArc(node), in the given order of gates, satisfying GateCond(out). If our

16 Similar problems have been identified in [36] for the mapping of UML 2.0 activity
diagrams to Petri nets.

17 The BPMN document provides no indications for determining this subset, which has
a synchronization role.

78 E. Börger and B. Thalheim

understanding of BPMN is correct then in this case DataCond(node,O) =
GateCond(out) and EventCond(node,O) = true.
For the event-based XOR a singleton set O consisting of the first out ∈
outArc(node), in the given order of gates, satisfying GateEvent(out). If our
understanding of BPMN is correct then in this case EventCond(node,O) =
GateEvent(out) and DataCond(node,O) = true.
For OR a non-empty subset of the outgoing arcs.

4.6 Gateway Pattern (Complex Gateway Nodes)

Instead of defining the preceding cases separately one after the other, one could
define once and for all one general gateway pattern that covers the above cases
as well as what in BPMN are called complex gateway nodes, namely by appro-
priate configurations of the pattern abstractions. This essentially comes up to
define two general machines Consume and Produce determining the (possi-
bly multiple) incoming respectively outgoing arcs where tokens are consumed
and produced. The abstract function patternToken determines which tokens are
produced on each outgoing arc in relation to the firingTokens on the incoming
arcs I . As shown above it can be refined for specific gateway nodes, for example
for OR-split/join gateways to orSplit/JoinToken, for AND-split/join gateways
to andSplit/JoinToken, etc.

GateTransitionPattern(node) =
let I = selectConsume(node)
let O = selectProduce(node) in

WorkflowTransition(node, I ,O)
where

CtlCond(node, I) = (I �= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

ProduceAll({(patternToken(firingToken(I), o), o) | o ∈ O})
ConsumeAll({(tj , inj) | 1 ≤ j ≤ n}) where

[t1, . . . , tn] = firingToken(I)
[in1, . . . , inn] = I

DataOp(node,O) = forall o ∈ O forall i ∈ assignments(o)
Assign(toi , fromi)

From this GateTransitionPattern(node) machine one can define the ma-
chines above for the various simple gateway nodes. For AND-joins selectConsume
chooses all incoming arcs, whereas for OR-joins it chooses exactly (exclusive
case) or at least one (inclusive cases). Similarly selectProduce chooses all the
outgoing arcs for AND-split gateways and exactly one (exclusive case) or at
least one outgoing arc (inclusive case) for OR-split nodes, whether data-based
or event-based.

Remark. As mentioned already above, the BPMN standard document allows
gateway nodes to be without incoming or without outgoing arc. To such nodes
the general stipulations on BPMN constructs without incoming or without out-
going arc in relation to start or end events apply, which are captured in our

A Method for Verifiable and Validatable Business Process Modeling 79

model as described in the two remarks at the end of the sections on start and
end events below.

5 BPMN Execution Model for Event Nodes

Events in BPMN can be of three types, namely Start, Intermediate and End
events, intended to “affect the sequencing or timing of activities of a process” [15,
Sect.9.3]. Thus BPMN events correspond to internal states of Finite State Ma-
chines (or more generally control states of control-state ASMs [7], see Sect. 10),
which start/end such machines and manage their intermediate control states.
So the set Event is a disjoint union of three subsets we are going to describe
now.

Event = StartEvent ∪ IntermEvent ∪ EndEvent

5.1 Start Events

A start event has no incoming arc (‘no Sequence flow can connect to a Start
Event’).18 Its role is to indicate ‘where a particular Process will start’. Therefore
a start event, when Triggered—a monitored predicate representing that the event
“ “happens” during the course of a business process” [15, Sect.9.3]— generates a
token (more generally: the required quantity of tokens) on an outgoing arc. This
is expressed by the transition rule StartEventTransition(node, e) defined
below, an instance of WorkflowTransition(node) where data and control
conditions and data operations are set to empty since they are unrelated to how
start events are defined in BPMN.

By trigger(node) we indicate the set of types of (possibly multiple) event
triggers that may be associated to node, each single one of which can be one of
the following: a message, a timer, a condition (in the BPMN document termed
a rule), a link or none. The BPMN standard document leaves it open how to
choose a single one out of a multiple event associated to a node in case two
or more events are triggered there simultaneously. This means that the non-
deterministic choice behavior is not furthermore constrained, so that we use
the ASM choose operator to select a single event trigger and thereby a rule
StartEventTransition(node, e) for execution, each of which is parameterized
by a particular event e ∈ trigger(node).19 This reflects the standard requirement
that “Each Start Event is an independent event. That is, a Process Instance
SHALL be generated when the Start Event is triggered.” [15, p.36]20

StartEventTransition(node) =
choose e ∈ trigger(node) StartEventTransition(node, e)

18 For one exception to this discipline see below.
19 An alternative would be to use a (possibly local and dynamic) selection function

selectEvent which each time chooses an event out of the set trigger(node).
20 See also the remark below.

80 E. Börger and B. Thalheim

By the best practice normal form we can assume that there is exactly one
outgoing arc out , namely after replacing possibly multiple outgoing arcs by
one outging arc, which enters an and-split gateway with multiple outgoing
arcs. This captures that by the BPMN standard document “Multiple Sequence
Flow MAY originate from a Start Event. For each Sequence Flow that has
the Start Event as a source, a new parallel path SHALL be generated . . .
Each path will have a separate unique Token that will traverse the Sequence
Flow.” [15, Sect.9.3.2 p.38-39] Therefore a StartEventTransition(node, e)
rule fires when the EventCond(node) is true that e is Triggered . It yields as
event EventOp(node, e) to ConsumEvent(e) and

StartEventTransition(node, e) rule yields as CtlOp(node) to Produce

a startToken on out . The produced token is supposed to contain the information
needed for “tracking the path(s) of the Token through the Process” [15, p.35].
Since this information is not furthermore specified by the standard document,
in our model it is kept abstract in terms of an abstract function startToken(e).
Traditionally it is supposed to contain at least an identifier for the just startede
process instance.

StartEventTransition(node, e) =
if Triggered(e) then Produce(startToken(e), out)

ConsumEvent(e)

Remark to Event Consumption in the Start Rule. If the intention of the
standard document is that not only the chosen triggered event but all triggered
events are consumed, it suffices to replace ConsumEvent(e) by the following
rule:

forall e ′ ∈ trigger(node) if Triggered(e ′) then ConsumEvent(e ′).

The definition of Triggered(e) is given by Table 9.4 in [15].
The submachine ConsumEvent(e) is defined depending on the type of

event e. Messages and timers represent (values of) monitored locations with
a predetermined consumption procedure. The standard document leaves it open
whether upon firing a transition triggered by an incoming message, that mes-
sage is consumed or not.21 Similarly it is not specified whether a timer event
is automatically consumed once its time has passed (precisely or with some de-
lay). Therefore for the BPMN 1.0 standard, for these two cases the submachine
ConsumEvent remains abstract, it has to be specified by the intended con-
sumption discipline of each system instance.

The same holds for events of type None or Rule.
Events e of type Link are used “for connecting the end (Result) of one Process

to the start (Trigger) of another” [15, Sect.9.3.2 pg.37]. In accordance with the
interpretation of a Link Intermediate Event as so-called “Off-Page connector” or
“Go To” object [15, Sect.9.3.4 p.48] we represent such links as special sequence

21 This is an important issue to clarify, since a same message may be incoming to
different events in a diagram.

A Method for Verifiable and Validatable Business Process Modeling 81

flow arcs, connecting source(link) (“one Process”) to target(link) (“another
Process”, in the BPMN standard denoted by the attribute ProcessRef (node))
with token defined for some linkToken(link). Therefore Triggered(e) for such a
start event means Enabled(link) and the ConsumEvent submachine deletes
linkToken(link), which has been produced before on this link arc at the
source(link), as result of a corresponding end event or link event at the source
link of a paired intermediate event (see below). Thus we have the following def-
inition for start events e of type Link (we write link for the connecting arc
corresponding to the type Link):

if type(e) = Link then
Triggered(e) = Enabled(link)
ConsumEvent(link) = Consume(linkToken(link), link)

There is one special case where a start event e can have a virtual incoming
arc inarc(e), namely “when a Start Event is used in an Expanded Sub-Process
and is attached to the boundary of that Sub-Process”. In this case “a Sequence
Flow from the higher-level Process MAY connect to the Start Event in lieu of
connecting to the actual boundary of the Sub-Process” [15, Sect.9.3.2 pg. 38].
This can be captured by treating such a connection as a special arc inarc(e)
incoming the start event e, which is enabled by the higher-level Process via
appropriate subProcTokens so that it suffices to include into the definition of
Triggered(e) for such events the condition Enabled(inarc(e)) and to include
into ConsumEvent(e) an update to Consume(subProcToken(e), inarc(e)).

Remark on Processes without Start Event. There is a special case that
applies to various BPMN constructs, namely items that have no incoming arc
(sequence flow) and belong to a process without start event. They are required
by the standard document to be activated (performed) when their process is
instantiated. For the sake of exposition, to avoid having to deal separately for
each item with this special case, we assume without loss of generality that each
process has a (virtual) start event and that all the items without incoming
sequence flow included in the process are connected to the start event by an
arc so that their performance is triggered when the start node is triggered
by the instantiation of the process. One could argue in favor of including this
assumption into the BPMN Best Practice Normal Form.

Remark on Multiple Start Events. For a later version of the standard it
is contemplated that there may be “a dependence for more than one Event to
happen before a Process can start” such that “a correlation mechanism will
be required so that different triggered Start Events will apply to the same
process instance.” [15, p.36-37] For such an extension it suffices to replace in
StartEventTransition the non-deterministically chosen event by a set of
CorrelatedEvents as follows:

MultipleStartEventTransition(node) =
choose E ⊆ CorrelatedEvent(node)

82 E. Börger and B. Thalheim

MultipleStartEventTransition(node,E)
MultipleStartEventTransition(node,E) =

if forall e ∈ E Triggered(e) then
Produce(startToken(e), out)
forall e ∈ E ConsumEvent(e)

Remark. The instantiation mechanism of BPMN using an event-based gateway
with its attribute ”instantiate” set to ”true” is covered by the semantics as
defined here for start events.

5.2 End Events

End events have no outgoing arc (“no Sequence Flow can connect from an End
Event”). “An End Event MAY have multiple incoming Sequence Flow. The Flow
MAY come from either alternative or parallel paths... If parallel Sequence Flow
target the End Event, then the Tokens will be consumed as they arrive” [15,
Sect.9.3.3 p.42,40]. This means that also for describing the behavior of end event
nodes we can assume without loss of generality the best practice normal form,
meaning here that there is exactly one incoming arc in—namely after replacing
possibly multiple incoming arcs by one arc that is incoming from a new or-join
gateway, which in turn is entered by multiple arcs (equipped with appropriate
associated token type). Thus an end event transition fires if the CtlCond is
satisfied, here if the incoming arc is Enabled ; as CtlOp it will Consume(in)
the firing token. BPMN forsees for end events also a possible EventOperation,
namely to EmitResult of having reached this end event of the process instance
to which the end event node belongs, which is assumed to be encoded into the
firing token. We use a function res(node) to denote the result defined at a given
node.

EndEventTransition(node) =
if Enabled(in) then

Consume(firingToken(in), in)
EmitResult(firingToken(in), res(node),node)

The type of result and its effect are defined in [15, Table 9.6]. We formalize this
by a submachine EmitResult. It Sends messages for results of type Message,
where Send denotes an abstract message sending mechanism (which assumes the
receiver information to be retrievable from the message). In case of Error, Can-
cel or Compensation type, via EmitResult an intermediate event is Triggered
to catch the error, cancel the transaction or compensate a previous action. We
denote this intermediate event, which is associated in the diagram to the consid-
ered node and the type of result , by targetIntermEv(result ,node).22 The node
to which targetIntermEv belongs is denoted by targetIntermEvNode(res ,node).

22 In case of Error this intermediate event is supposed to be within what is called the
Event Context, in case of Cancel it is assumed to be attached to the boundary of
the Transaction Sub-Process where the Cancel event occurs.

A Method for Verifiable and Validatable Business Process Modeling 83

In the Cancel case also “A Transaction Protocol Cancel message should be sent
to any Entities involved in the Transaction” [15, Sect.9.3.3 Table 9.6], formal-
ized below as a Callback to listener(cancel ,node). Receiving such a message
is presumably supposed to have as effect to trigger a corresponding intermediate
cancel event (see [15, p.60]).

A result of type Link is intended to connect the end of the current process
to the start of the target process. This leads us to the end event counterpart
of the formalization explained above for start events of type Link: an end event
node of type Link is the source(link) of the interpretation of link as a spe-
cial sequence flow arc, where by the rule WorkflowTransition(source(link))
the linkTokens, needed to make the link Enabled , are Produced. As we will
see below this may also happen at the source link of a paired intermediate
event node of type Link. These tokens will then be consumed by the rule
WorkflowTransition(target(link)) at target(link), e.g. a connected start
event node of type Link whose incoming arc has been Enabled . We use the same
technique to describe that, in case the result type is None and node is a subpro-
cess end node, “the flow goes back to its Parent Process”: we Produce appro-
priate tokens on the targetArc(node), which is supposed to lead back to the node
where to return in the parent(p) process.

For a result of type Terminate we use a submachine DeleteAllTokens

that ends all activities in the current process instance, including all multiple
instances of activities, by deleting the tokens from the arcs leading to such ac-
tivities. To denote these activities we use a set Activity(p) which we assume to
a) contain all activities contained in process instance p and b) to be dynami-
cally updated by all running instances of multiple instances within p. In defining
DeleteAllTokens we also reflect the fact that tokens are viewed in the BPMN
standard as belonging to the process in which they are created—“an End event
consumes a Token that had been generated from a Start Event within the same
level of Process” [15, Sect.9.3.3 p.40]. Therefore we delete not all tokens, but
only all tokens belonging to the given process p, denoted by a set TokenSet(p).

For the Multiple result type we write MultipleResult(node) for the set of single
results that are associated to the node: for each of them the EmitResult action
is taken.

EmitResult(t , result ,node) =
if type(result) = Message then Send(mssg(node, t))
if type(result) ∈ {Error ,Cancel ,Compensation} then

Triggered(targetIntermEv(result ,node)) := true
// trigger intermediate event
Insert(exc(t), excType(targetIntermEvNode(result ,node))))

if type(result) = Cancel then
Callback(mssg(cancel , exc(t),node), listener(cancel ,node))

if type(result) = Link then Produce(linkToken(result), result)
if type(result) = Terminate then DeleteAllTokens(process(t))
if type(result) = None and IsSubprocessEnd(node) then

Produce(returnToken(targetArc(node), t), targetArc(node))

84 E. Börger and B. Thalheim

if type(result) = Multiple then
forall r ∈ MultipleResult(node) EmitResult(t , r ,node)

where
Callback(m,L) = forall l ∈ L Send(m, l)
DeleteAllTokens(p) = forall act ∈ Activity(p)

forall a ∈ inArc(act) forall t ∈ TokenSet(p) Empty(token(a, t))

This concludes the description of end events in BPMN, since “Flow Objects
that do not have any outgoing Sequence Flow” but are not declared as end events
are treated the same way as end events. In fact “a Token entering a path-ending
Flow Object will be consumed when the processing performed by the object is
completed (i.e., when the path has completed), as if the Token had then gone
on to reach an End Event.” [15, Sect.9.3.3 pg.40-41]. This is captured by the
CtlOp(node) submachine executed by the WorkflowTransition(node) rule
for the corresponding node to Consume(in) when Enabled(in).

Remark on Tokens at Start/End Events. The standard document explains
tokens at end events as follows:

. . . an End Event consumes a Token that had been generated from a Start
Event within the same level of Process. If parallel Sequence Flow target
the End Event, then the Tokens will be consumed as they arrive. [15,
p.40]

Such a constraint on the tokens that are Produced at a start event to be
Consumed at end events in possibly parallel paths of the same process level
comes up to a specification of the abstract functions denoting the specific tokens
associated to the arc outgoing start events respectively the arc incoming end
events.

Remark on Process Completion. For a process to be Completed it is required
that “all the tokens that were generated within the Process must be consumed by
an End Event”, except for subprocesses which “can be stopped prior to normal
completion through exception Intermediate Events” (ibid.). There is also the
special case of a process without end events. In this case, “when all Tokens for a
given instance of the Process are consumed, then the process will reach a state of
being completed” (ibid., p.41). It is also stipulated that “all Flow Objects that do
not have any outgoing Sequence Flow . . . mark the end of a path in the Process.
However, the process MUST NOT end until all parallel paths have completed”
(ibid., p.40), without providing a definition of “parallel path”. This issue should
be clarified in the standard document. For some of the BPMN constructs there
is a precise definition of what it means to be Completed, see for example the case
of task nodes below.

5.3 Intermediate Events

In BPMN intermediate event nodes are used in two different ways: to represent
exception or compensation handling (Exception Flow Case) or to represent what

A Method for Verifiable and Validatable Business Process Modeling 85

is called Normal Flow (Normal Flow Case). In the first case the intermediate
event e is placed on the boundary of the task or sub-process to which the ex-
ception or compensation may apply. targetAct(e) denotes the activity to whose
boundary e is attached and for which it “is used to signify an exception or com-
pensation” [15, Sect.9.3.4 Table 9.9]. We denote such events as BoundaryEvents.
They do not have any ingoing arc (“MUST NOT be target for Sequence Flow”),
but typically have one outgoing arc denoted again by out (“MUST be a source for
Sequence Flow; it can have one (and only one) outgoing Sequence Flow”, except
for intermediate events of type Compensation which “MAY have an outgoing
Association”) [15, Sect.9.3.4 p.47]. In the Normal Flow Case the intermediate
event occurs “in the main flow” of the process (not on the boundary of its di-
agram) and has a) exactly one outgoing arc,23 b) exactly one ingoing arc if it
is of type None, Error or Compensation and at most one ingoing arc if it is of
type Message, Timer, Rule or Link.

The behavioral meaning of an intermediate event also depends on the asso-
ciated event type, called trigger [15, Sect.9.3.4 Table 9.8]. As for start events,
we use trigger(node) to indicate the set of types of (possibly multiple) event
triggers that may be associated to node. For intermediate events, in addition to
the types we saw for start events, there are three (trigger) types that are present
also for end events, namely Error, Cancel and Compensation. Following Table
9.8 and the specification of the Activity Boundary Conditions in op.cit., interme-
diate events of type Error, Compensation, Rule, Message or Timer can be used
in both the Normal Flow and the Exception Flow case, whereas intermediate
events of type None or Link are used only for Normal Flow and intermediate
events of type Cancel or Multiple only for BoundaryEvents.

If two or more event triggers are Triggered simultaneously at an intermediate
event node, since “only one of them will be required”, one of them will be
chosen, the same as established for start event nodes. (As we will see below, for
intermediate events type Multiple is allowed to occur only on the boundary of
an activity.)

IntermEventTransition(node) =
choose e ∈ trigger(node) IntermEventTransition(node, e)

It remains therefore to define IntermEventTransition(node, e) for each
type of event e and depending on whether e is a BoundaryEv(e) or not.

In each case, the rule checks that the event is Triggered . The definition of
Triggered(e) given for start events in Table 9.4 of [15] is extended in Table 9.8
for intermediate events to include the types Error, Cancel and Compensation. An
intermediate event of type Cancel is by definition in [15, Sect.9.3.4 Table 9.8]
a BoundaryEvent of a transaction subprocess and Triggered by an end event
of type Cancel or a Callback message received during the execution of the
transaction. Similarly an intermediate event of type Error or Compensation can
be Triggered in particular as the result of an end event of corresponding type,
23 Except source link intermediate events, which therefore receive a special treatment

in rule IntermEventTransition(node, e) below.

86 E. Börger and B. Thalheim

see the definition of EmitResult for end events. The EventOp(node) will
ConsumEvent(e), which is defined as for start events adding for the three
event types Error, Cancel and Compensation appropriate clauses (typically the
update Triggered(e) := false).

In the Normal Flow Case where BoundaryEv(e) is false, the rule guard con-
tains also the CtlCond that the incoming arc—where the activity was waiting
for the intermediate event to happen—is Enabled . Correspondingly there is a
CtlOp(node) to Consume(in). Where the sequence flow will continue depends
on the type of event.

In case of an intermediate event of type Link , the considered node is
the source link node of a paired intermediate event and as such has to
Produce(linkToken(link), link), read: the appropriate link token(s) on the
link—which is interpreted in our model as a special arc that leads to the target
link node of the paired intermediate event, as explained above for start and end
events.

Case type(e) = None is meant to simply “indicate some state of change in
the process”, so that the CtlOp will also Produce an appropriate number and
type of tokens on the outgoing arc. The same happens in case of an intermediate
event of type Message or Timer.

An intermediate event of type Error or Compensation or Rule within the main
flow is intended to “change the Normal Flow into an Exception or Compensation
Flow”, so that the error or compensation is Thrown, which means that the
corresponding next enclosing BoundaryEvent occurrence (which we denote by a
function targetIntermEv similar to the one used already in EmitResult above)
is Triggered to handle (catch or forward) the exception, error (corresponding to
the ErrorCode if any) or compensation. In addition the information on the token
that triggered the event is stored in the targetIntermEv by inserting it into a set
excType, which is used when the boundary intermediate event is triggered.

In the Exception Case where BoundaryEv(e) is true, if the activity to whose
boundary the intermediate event is attached is active,24 the sequence flow
is requested to “change the Normal Flow into an Exception Flow” and to
TryToCatch the exception respectively perform the compensation. If there
is no match for the exception, it is rethrown to the next enclosing correspond-
ing intermediate BoundaryEvent. If the match succeeds, the out arc (which we
interprete in our model as an association arc in case of a compensation) leads in
the diagram to an exception handling or compensation or cancelling activity and
the CtlOp(node) action consists in making this arc Enabled by an operation
Produce(out).

Every intermediate event of type Compensation attached to the boundary of
an activity is assumed by BPMN to catch the compensation (read: to satisfy

24 The boundary creates what is called the Event Context. “The Event Context will
respond to specific Triggers to interrupt the activity and redirect the flow through
the Intermediate Event. The Event Context will only respond if it is active (running)
at the time of the Trigger. If the activity has completed, then the Trigger may occur
with no response.” [15, Sect.10.2.2 p.131].

A Method for Verifiable and Validatable Business Process Modeling 87

ExcMatch) since “the object of the activity that needs to be compensated . . .
will provide the Id necessary to match the compensation event with the event
that “threw” the compensation”. For transactions the following is required:

When a Transaction is cancelled, then the activities inside the Transac-
tion will be subjected to the cancellation actions, which could include
rolling back the process and compensation for specific activities . . . A
Cancel Intermediate Event, attached to the boundary of the activity,
will direct the flow after the Transaction has been rolled back and all
compensation has been completed. [15, p.60]

The standard document does not specify the exact behavior of transactions25

and refers for this as an open issue to an Annex D (ibid.), but this annex seems to
have been removed and not be accessible any more. We therefore formulate only
the cited statement and leave it as an open issue how the cancellation activities
(roll back and/or compensation) are determined and their execution controlled.

IntermEventTransition(node, e) =
if Triggered(e) then

if not BoundaryEv(e) then
if Enabled(in) then let t = firingToken(in)

ConsumEvent(e)
Consume(t , in)
if type(e) = Link then Produce(linkToken(link), link)
if type(e) = None then Produce(t , out)
if type(e) = Message then

if NormalFlowCont(mssg(node), process(t))
then Produce(t , out)
else Throw(exc(mssg(node)), targetIntermEv(node))

if type(e) = Timer then Produce(timerToken(t), out)
if type(e) ∈ {Error ,Compensation,Rule} then
Throw(e, targetIntermEv(e))

if BoundaryEv(e) then
if active(targetAct(e)) then

ConsumEvent(e)
if type(e) = Timer then Insert(timerEv(e), excType(node))
if type(e) = Rule then Insert(ruleEv(e), excType(node))
if type(e) = Message then Insert(mssgEv(e), excType(node))
if type(e) = Cancel then choose exc ∈ excType(node) in

25 Also the descriptions in Table.8.3 (p.15), Table 8.3 (p.25) and Table B.50 (p.271,
related to the attributes introduced in Table 9.13 (p.56)) are incomplete, as is the
description of the group concept introduced informally in Sect.9.7.4 (p.95-97). The
latter permits a transaction to span over more than one process, without clarifying
the conditions for this by more than the statement that “at the end of a success-
ful Transaction Sub-Process . . . the transaction protocol must verify that all the
participants have successfully completed their end of the Transaction” (p.61).

88 E. Börger and B. Thalheim

if Completed(Cancellation(e, exc)) then
Produce(excToken(e, exc), out)

else TryToCatch(e,node)
where

TryToCatch(ev ,node) =
if ExcMatch(ev) then Produce(out(ev))

else TrytoCatch(ev , targetIntermEv(node, ev))
Completed(Cancellation(e)) =

RolledBack(targetAct(e)) and Completed(Compensation(targetAct(e)))

Remark. For intermediate events of type Message, Timer, Rule or Link
the BPMN standard allows the event to be without incoming arc and to
“always be ready to accept the Event Triggers while the Process in which
they are contained is active” [15, Sect.9.3.4 p.48]. In this case we under-
stand the IntermEventTransition(node, e) rule as being written without
Consume(t , in) andwith the guardEnabled(in) replacedby active(targetAct(e)).
ExcMatch(e) is assumed to be true for eachTriggered event of type Timer, Message
or Rule.

The above formalization captures that an intermediate event on the boundary
of a process which contains an externally executed task can be triggered by
the execution of that task. In fact the atomicity of tasks does not imply their
zero-time execution.26

Remark on Token Passing. Differently from gateway nodes, where the con-
sumed and the produced tokens may carry different information, and differently
from start or end event nodes where tokens are only produced or only con-
sumed, for intermediate event nodes a typical assumption is that tokens are
simply passed. A similar remark applies to all nodes with only one incoming and
one outgoing arc (see for example the activity nodes below).

6 BPMN Execution Model for Activity Nodes

Activities are divided into two types, atomic activities (tasks) and compound
ones (subprocesses). Both tasks and subprocesses can contain iterative compo-
nents of different loopType, namely so-called standard loops (while, until) or
multiInstance loops (for each); for subprocesses this includes also so-called ad-
hoc processes. For purely expository purposes, to avoid repetitions, we therefore
slightly deviate from the classification in the standard document and put these
iterative tasks or subprocesses into a third category of say iterative processes
(IterProc), without changing any of their standard attributes. Therefore we have
the following split of Activity into three subsets:

26 The Petri net model for tasks in [17] is built upon the assumption that “the occur-
rence of the exception may only interrupt the normal flow at the point when it is
ready to execute the task”. But this seems to be an over-simplification of exceptions
triggered by tasks.

A Method for Verifiable and Validatable Business Process Modeling 89

Activity = Task ∪ SubProcess ∪ IterProc
IterProc = Loop ∪ MultiInstance ∪ AdHoc

The notion of atomicity is the one known from information systems, mean-
ing that the task in question “is not broken down to a finer level of Process
Model detail” [15, Sect.9.4.3 p.62]; it does not imply the 0-time-execution view
that is traditionally associated with the notion of atomicity. Typically the ac-
tion underlying the given task is intended to represent that within the given
business process “an end-user and/or an application are used to perform the
Task when it is executed” (ibid.), so that atomicity refers to the fact that as
part of a business process the task is viewed as a unit process and not “defined
as a flow of other activities”(ibid.p.53), though it may and usually will take
its execution time without this time being furthermore analyzed in the work-
flow diagram.27 We reflect this notion of atomicity by using in the definition
of TaskTransition(task) below the sequentiality operator seq for structuring
ASMs (see [12, Ch.4]). This operator turns a low-level sequential execution view
of two machines M followed by N into a high-level atomic view of one machine
M seq N , exactly as required by the BPMN understanding of task execution.

Besides being “defined as a flow of other activities” to achieve modularity
of the process design, compound subprocesses are also used to a) create a con-
text for exception handling and compensation (in a transactional context) “that
applies to a group of activities”, b) for a compact representation of parallel
activities and c) for process instantiation, as will be discussed below.

Every activity comes with finitely many (possibly zero) associated so-called
InputSets and OutputSets, which define the data requirements for input to and
output from the activity. When these sets are present, at least one input must
be defined “to allow the activity to be performed” and “at the completion of
the activity, only one of the OutputSets may be produced”, the choice being up
to the implementation—but respecting the so-called IORules, expressions that
“may indicate a relationship between an OutputSet and an InputSet that started
the activity” [15, Sect.9.4.3 Table 9.10].

6.1 Task Nodes

In this section we consider only tasks that are not marked as iterative; tasks and
subprocesses marked as Loop or MultInstance are considered below.

For the sake of simplicity of exposition in the following description we assume
also for tasks the BPMN Best Practice Normal Form for sequence flow connec-
tions, namely that tasks have (at most) one incoming arc and (at most) one
outgoing arc. In fact, multiple incoming flow, which may be from alternative
or from parallel paths,28 can be taken care of by adding a preceding OR-Join
respectively AND-Join gateway node; multiple outgoing flow can be taken care
of by adding a following AND-Split gateway, so that “a separate parallel path
is being created for each Flow” [15, p.67-68].

27 This may also explain why a BPMN task is allowed to have an iterative substructure.
28 In the case of alternative paths the standard documents speaks of uncontrolled flow.

90 E. Börger and B. Thalheim

Thus in case incoming and/or outgoing arcs are present, the
TaskTransition(task) rule has as CtlCond(task) the guard Enabled(in)
and as CtlOp(task) the machines Consume(in) and/or Produce(out). By in-
cluding in the definition below these control parts into square brackets we indicate
that they may not be there, depending on whether the considered task node has
incoming and/or outgoing arcs or not. Since the execution of the action associated
to the task may take time, the action Produce(out) to forward the control should
take place only after that execution has Completed(task), together with the (pos-
sibly missing) output producing action ProduceOutput(outputSets(task))
defined below. Therefore every rule TaskTransition(task) will consist of
sequentially first Executing the task proper and then, upon task completion,
proceeding to produce the output (if any) and the tokens (in case) to forward
the control.

Whether a rule TaskTransition(task) can be fired depends also on a
DataCond(task) expressing that the task is ReadyForExecution, which in turn
depends on the particular type of the task , as does the task Execution. The
standard considers eight types for tasks:

TaskType = {Service,User ,Receive,Send ,Script ,Manual ,Reference,None}

A task of type Service or User is defined to be ReadyForExecution
upon “the availability of any defined InputSets”, formalized by a predicate
SomeAvail(inputSets(task)) to be true. To Exec(task) in these two cases means
to Send(inMssg(task)) (“at the start of the Task”). In the Service case this is
presumably intended to have the effect to Activate the associated service, char-
acterized as “some sort of service, which could be a Web service or an automated
application” [15, p.64]; in the User case presumably to Activate the external
performers of the associated action for the given input, characterized as “the
human resource that will be performing the User Task . . . with the assistance
of a software application” (ibid.p.65-66).29 In both cases to Activate the (per-
formance of the) task is followed by waiting until an outMssg(task) arrives that
“marks the completion of the Task”.30 The latter is formalized by the predicate
Completed(task) [15, Table 9.18 p.64, Table 9.21 p.66].

A task of type Receive “is designed to wait for a message to arrive
. . . Once the message has been received, the Task is completed.” Therefore
Exec(task) is defined as Receive(mssg(task)) and ReadyForExec(task) is de-
fined as Arrived(mssg(task)). There is a special case that a Receive task is “used
to start a Process”, which is indicated by an attribute called Instantiate(task). In
this case it is required for the underlying diagram, as static constraint, that either
task has no incoming arc and the associated process has no start event, or task
has an incoming arc and source(in) is a start event of the associated process [15,

29 The standard document leaves it open whether the service executing agent respec-
tively the human performers are incorporated as address into the inMssg(task) or
whether this address should be a parameter of the Send machine.

30 It remains unclear in the wording of the standard document whether Arrived or
Received is meant here.

A Method for Verifiable and Validatable Business Process Modeling 91

Table 9.19 p.65]. Therefore in this particular case ReadyForExec(task) is defined
to be the conjunction of Instantiate(task) = true and Arrived(mssg(task)).

Tasks of type Send, Manual or Script are designed to unconditionally Execute
the associated action, namely to Send(msgg(task)) respectively to Call the per-
former(s) of the associated manual action or script code—presumably with the
effect to trigger its execution and to wait until that action or code execution is
Completed . In the case of script code the executing agent (read: the engine that in-
terpretes the script code) is the performer and the script code represents the to be
executed action. In the case of a manual task, to Call the performer is intended
to activate “the human resource that will be performing the Manual Task” [15,
Table 9.23 p.67], which we denote as action of the task for the given input.

A task of type Reference simply calls another task; to Execute it means to
Execute the referenced taskRef (task) (recursive definition).

The standard document determines the currInput(task), from where the (as-
sumed to be defined) inputs(currInput(task)) to start task are taken, by saying
that “each InputSet is sufficient to allow the activity to be performed” [15, Table
9.10 p.50], leaving it open which element of inputSets(task) to choose if there
are more than one available. We therefore consider currInput(task) as result of
an implementation-defined selection procedure selectInputSets that selects an el-
ement out of SomeAvail(inputSets(task)). This input remains known until the
end of the proper task Execution since the choice of the output may depend on
it via the relation IORules(task) between input and output sets (see below the
definition of ProduceOutput).

To produce an output (if any, indicated in the definition of
TaskTransition(task) by square brackets) upon task completion,31 an
element of outputSets(task) with defined output is chosen that satisfies the
IORule(task) together with the currInputSet(task) ∈ inputSets(task) from
which the inputs had been taken to start the task . For the chosen element the
defined outputs(o) are Emitted [15, Table 9.10 p.50].

We collect here also the BPMN stipulations for the completion of single tasks.

Completed(t , ttype) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Arrived(outMssg(t , ttype)) if type(t) ∈ {Service,User}
Received(mssg(task , ttype)) if type(t) = Receive
Sent(mssg(task , ttype)) if type(t) = Send
Completed(action(t , inputs(currInput(t))), ttype) if type(t) ∈ {Script ,Manual}
Completed(taskRef (t), ttype) if type(t) = Reference

31 In case of no outgoing sequence flow and no end event in the associated process, the
task (if it is not marked as a Compensation Task, in which case it is “not considered
a part of the Normal Flow”) “marks the end of one or more paths in the Process.” In
this case the process is defined to be completed “when the Taks ends and there are
not other parallel paths active” [15, Table 9.4.3 p.68]. This definition assumes the
other parallel paths to be known, although from the standard document it is not clear
whether this knowledge derives from static information on the graph structure or
from run-time bookkeeping of the paths that form a parallel subprocess. Presumably
it is intended to permit both.

92 E. Börger and B. Thalheim

Besides the notions of messages to have Arrived or been Sent they use a
concept of completion for the execution of (the actions associated to) script and
manual tasks, all of which the standard document seems to assume as known.

TaskTransition(task) = [if Enabled(in) then]
if ReadyForExec(task) then let t = firingToken(in)

[Consume(t , in)]
let i = selectInputSets (SomeAvail(inputSets(task)))

Exec(task , inputs(i))
currInput(task) := i

[seq
if Completed(task , t) then

[ProduceOutput(outputSets(task), currInput(task))]
[Produce(taskToken(task , t), out)]]

where
ProduceOutput(outputSets(t), i) =

choose o ∈ outputSets(t) with
Defined(outputs(o)) and
IORules(t)(o, i) = true

Emit(outputs(o))

ReadyForExec(t) =⎧⎨
⎩

SomeAvail(inputSets(t)) if type(t) ∈ {Service,User}
Arrived(mssg(t)) [and Instantiate(t)] if type(t) = Receive
true if type(t) ∈ {Send ,Script ,Manual ,Reference}

Exec(t , i) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Send(inMssg(t)) if type(t) ∈ {Service,User}
Receive(mssg(t)) if type(t) = Receive
Send(mssg(t)) if type(t) ∈ {Send}
Call(performer(action(t , i)), action(t , i)) if type(t) ∈ {Script ,Manual}
Exec(taskRef (t), i) if type(t) = Reference
skip if type(t) = None

6.2 Iterative Activity Nodes

The BPMN concepts of iterative activities correspond to well-known program-
ming concepts of iterated, parallel or sequential execution or stepwise execution
in a non-deterministic order. Nevertheless we include their discussion here for the
sake of completeness. Except their internal iterative structure, iterative activities
(tasks and subprocesses with corresponding markers) share the general sequence
flow and input/output mechanism of arbitrary activities. Therefore we reuse in
the transition rules for iterative activities the corresponding (possibly missing,
depending on whether there is incoming or outgoing sequence flow) entry and
exit part of the TaskTransition(task) rule without further explanations. For
the sake of exposition we assume without loss of generality also for iterative
activity nodes the BPMN Best Practice Normal Form so that we consider (at
most) one ingoing and (at most) one outgoing arc.

A Method for Verifiable and Validatable Business Process Modeling 93

Standard Loops. Each activity in the set Loop of standard loops comes with
a loopCond ition that may be evaluated at one of the following two moments
(called testTime):

before the to be iterated act ivity begins, in which case the loop activity
corresponds to the programming construct while loopCond do act ,
after the activity finishes, in which case the loop activity corresponds to the
programming construct until loopCond do act .

The BPMN standard forsees also that in each round a loopCounter is updated,
which can be used in the loopCond (as well as a loopMaximum location). The
standard document does not explain however whether the input is taken only
once, at the entry of the iteration, or at the beginning of each iteration step.
There are reasonable applications for both interpretations, so that the issue
should be clarified. This is partly a question of whether the function inputs ,
which is applied to the selected input set currInput(node) to provide the input
for the iterBody of the to be iterated activity, is declared to be a static or a
dynamic function.

The preceding discussion is summarized by the following rule for nodes with
loopType(node) = Standard . For a natural definition of while and until in
a way that is compatible with the synchronous parallelism of ASM execution
see [12, Ch.4]. We use an abstract function loopToken to denote how (if at all)
the information on loop instances and incoming tokens is elaborated during the
iteration.

LoopTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if testTime(node) = before then
while loopCond(node, t) LoopBody(node, t)

if testTime(node) = after then
until loopCond(node, t) LoopBody(node, t)

[seq LoopExit(node, t)]
where

LoopBody(n, t) =
loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node, loopToken(t , loopCounter(node, t) + 1)
[, inputs(currInput(node))])

The auxiliary machines LoopEntry and LoopExit are defined as follows (the
possibly missing parts, in case there is no incoming/outgoing sequence flow or no
input/output, are in square brackets). Note that the predicate LoopCompleted(n)
is not defined in the standard document. It seems that the standard permits to
exit a loop at any place, for example by a link intermediate event (Fig.10.46 p.126)
or by a so-called Go To Object (Fig.10.45 ibid.), so that the question has to be an-
wered whether this is considered as completion of the loop or not (see the example
for “improper looping” in Fig.10.51 p.129).

94 E. Börger and B. Thalheim

LoopEntry(n, t) =
loopCounter(n, t) := 0
[Consume(t , in)]
[currInput(n) := selectInputSets (SomeAvail(inputSets(n)))]

LoopExit(n, t) =
if Completed(n, t) then

[ProduceOutput(outputSets(n), currInput(n))]
[Produce(loopExitToken(t , loopCounter(n, t)), out)]

Completed(n, t) = LoopCompleted(n, t) if n ∈ Loop(t)

Multi-instance Loops. The iteration condition of activities in the set
MultiInstance of multi-instance loops is integer-valued, an expression (location in
ASM terms) denoted miNumber , called MI-Condition in the standard document.
A miOrdering for the execution of the instances is defined, which is either paral-
lel or sequential. In the latter case the order seems to implicitly be understood as
the order of integer numbers, so that we can use for the description of this case
the ASM construct foreach (for a definition see the appendix Sect. 10) followed
by the submachine LoopExit defined above. Also in this case a loopCounter is
“updated at runtime”, though here it is allowed to only be “used for tracking
the status of a loop” and not in miNumber , which is assumed to be “evaluated
only once before the activity is performed” [15, Sect.9.4.1]. We reflect in the rule
MultiInstTransition below the explicitly stated standard requirement that
“The LoopCounter attribute MUST be incremented at the start of a loop”.

In the parallel case a miFlowCond ition indicates one of four types to complete
the parallel execution of the multiple instances of iterBody. In these four cases
we know only that all iteration body instances are started in parallel (simulta-
neously). Therefore we use an abstract machine Start for starting the parallel
execution of the multiple instances of the iteration body. The requirements for
the miOrdering = Parallel case appear in [15, Table 9.12 p.52] and read as
follows.

Case miFlowCond = All : “the Token SHALL continue past the ac-
tivity after all of the activity instances have completed”. This means
to LoopExit(node) only after for each i ≤ miNumber the predicate
Completed(iterBody(node,miToken(t , i)[. . .])) has become true.
Note that for the (sequential or parallel) splitting of multiple instances the
information on the current multiple instance number i becomes a parameter
of the miToken function in the iteration body; it corresponds to (and typi-
cally will be equal to) the loopCounter(node, t) parameter of the loopToken
function in LoopTransition. In this way the token miToken(t , i) contains
the information on the current iteration instance.
Case miFlowCond = None, also called uncontrolled flow : “all activity in-
stances SHALL generate a token that will continue when that instance
is completed”. This means that each time for some i ≤ miNumber
the predicate Completed(iterBody(node,miToken(t , i)[. . .])) becomes true,
one has to Produce a token on out . We define below a submachine
EveryMultInstExit to formalize this behavior.

A Method for Verifiable and Validatable Business Process Modeling 95

Case miFlowCond = One: “the Token SHALL continue past the activity
after only one of the activity instances has completed. The activity will
continue its other instances, but additional Tokens MUST NOT be passed
from the activity”. We define below a submachine OneMultInstExit to
formalize this behavior.
Case miFlowCond = Complex : a complexMiFlowCond expression, whose
evaluation is allowed to involve process data, “SHALL determine when and
how many Tokens will continue past the activity”. Thus complexMiFlowCond
provides besides the number tokenNo (of activity instances that will produce
continuation tokens) also a predicate TokenTime indicating when passing
the token via Produce(out) is allowed to happen. We will formalize the
required behavior in a submachine ComplMultInstExit defined below.
There it will turn out that EveryMultInstExit and OneMultInstExit

are simple instantiations of ComplMultInstExit.

MultiInstTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if miOrdering(node) = Sequential then
foreach i ≤ miNumber(node)

loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node,miToken(t , i)[, inputs(currInput(node))])

seq LoopExit(node, t)
if miOrdering(node) = Parallel then

forall i ≤ miNumber(node)
Start(iterBody(node,miToken(t , i)[, inputs(currInput(node))]))

seq
if miFlowCond = All then

if Completed(node, t) then LoopExit(node, t)
if miFlowCond = None then EveryMultInstExit(node, t)
if miFlowCond = One then OneMultInstExit(node, t)
if miFlowCond = Complex then
ComplMultInstExit(node, t)

where
Completed(n, t) = forall i ≤ miNumber(n)
Completed(iterBody(n,miToken(t , i)[. . .]))

ComplMultInstExit has to keep track of whether the initially empty
set of those activity instances, which have AlreadyCompleted and have passed
their continuation tokens to the outgoing arc, has reached the prescribed num-
ber tokenNo(complexMiFlowCond) of elements. If yes, the remaining instances
upon their completion are prevented from passing further tokens outside the
multiple instance activity. If not, each time an instance appears to be in
NewCompleted we once more Produce a token on the outgoing arc out—if
the TokenTime(complexMiFlowCond) condition allows us to do so, in which

96 E. Börger and B. Thalheim

case we also insert the instance into the set AlreadyCompleted . Since the context
apparently is distributed and since the standard document contains no con-
straint on TokenTime(complexMiFlowCond), at each moment more than one
instance may show up in NewCompleted .32 Therefore we use a selection function
selectNewCompleted to choose an element from the set NewCompleted33 of multiple
instances that have Completed but not yet produced their continuation token.34

In the following definition n is supposed to be a multiple instance activity node
with parallel miOrdering. The standard document leaves it open whether output
(if any) is produced either after each instance has completed or only at the end
of the entire multiple instance activity, so that in our definition we write the
corresponding updates in square brackets to indicate that they may be optional.

ComplMultInstExit(n, t) = // for miOrdering(n) = Parallel
AlreadyCompleted := ∅ // initially no instance is completed
seq

while AlreadyCompleted �= {i | i ≤ miNumber(n)} do
if NewCompleted(n, t) �= ∅ then

if | AlreadyCompleted |< tokenNo(complexMiFlowCond)
then

if TokenTime(complexMiFlowCond) then
let i0 = selectNewCompleted in

Produce(miExitToken(t , i0), out)
Insert(i0,AlreadyCompleted)

[ProduceOutput(outputSets(n), currInput(n))]
else forall i ∈ NewCompleted(n, t) Insert(i ,AlreadyCompleted)

where
NewCompleted(n, t) =

{i ≤ miNumber(n) | Completed(iterBody(n,miToken(t , i)[. . .])) and i �∈
AlreadyCompleted}

The EveryMultInstExit machine is an instance of ComplMultInstExit

where tokenNo is the number (read: cardinality of the set) of all to-be-considered
activity instances and the TokenTime is any time.

32 The description of the case miFlowCond = One in the standard document is am-
biguous: the wording after only one of the activity instances has completed seems to
implicitly assume that at each moment at most one activity instance can complete
its action. It is unclear whether this is really meant and if yes, how it can be achieved
in a general distributed context.

33 In ASM terminology this is a derived set, since its definition is fixed and given in
terms of other dynamic locations, here Completed and AlreadyCompleted .

34 If one prefers not to describe any selection mechanism here, one could instead use the
forall construct as done in the else branch. This creates however the problem that it
would not be impossible for more than tokenNo(complexMiFlowCond) many process
instances to complete simultaneously so that a more sophisticated mechanism must
be provided to limit the number of those ones that are allowed to Produce a token
on the outgoing arc.

A Method for Verifiable and Validatable Business Process Modeling 97

EveryMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) =| {i | i ≤ miNumber(n)} |
TokenTime(complexMiFlowCond) = true

OneMultInstExit is an instance of ComplMultInstExit where
tokenNo = 1 and the TokenTime is any time.

OneMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) = 1
TokenTime(complexMiFlowCond) = true

Remark. Into the definition of MultiInstTransition(node) one has to in-
clude the dynamic update of the set Activity(p) of all running instances of mul-
tiple instances within process instance p, since this set is used for the description
of the behavior of end event transitions (in the submachine DeleteAllTokens

of EmitResult). It suffices to insert into some submachines some additional up-
dates as follows:

include Insert(inst ,Activity(proc(t)) in every place (namely in
MultiInstTransition(node)) where the start of the execution of a
multiple instance inst is described,
include the update Delete(inst ,Activity(proc(t))) where the completion
event of an activity instance inst is described (namely in LoopExit for the
sequential case and for the parallel case in ComplMultInstExit).

AdHoc Processes. AdHoc processes are defined in [15, Table 9.14 p.56-57]
as subprocesses of type Embedded whose AdHoc attribute is set to true. The
declared intention is to describe by such processes activities that “are not con-
trolled or sequenced in any particular order” by the activity itself, leaving their
control to be “determined by the performers of the activities”. Nevertheless an
adHocOrder ing function is provided to specify either a parallel execution (the
default case) or a sequential one.35

Notably the definition of when an adhoc activity is Completed is left to a
monitored predicate AdHocCompletionCond ition, which “cannot be defined be-
forehand” (ibid.p.132) and is required to be “determined by the performes of
the activites”. Therefore the execution of the rule for an adhoc process contin-
ues as long as the AdHocCompletionCond ition has not yet become true; there
is no further enabledness condition for the subprocesses of an ad hoc processes.
As a consequence it is probably implicitly required that the AdHocCompletion-
Cond ition becomes true when all the “activities within an AdHoc Embedded
Sub-Process”, which we denote by a set (parallel case) or list (sequential case)

35 For the description of the parallel case we use the parallel ASM construct forall,
for the sequential case the foreach construct as defined for ASMs in Sect. 10 using
seq.

98 E. Börger and B. Thalheim

innerAct, are Completed . Thus the transition rule to describe the behavior of an
adhoc activity can be formalized as follows.

AdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i]
while not AdHocCompletionCond(node, t)

if adHocOrder(node) = Parallel then forall a ∈ innerAct(node) do
a[inputs(i)]
if adHocOrder(node) = Sequential then let< a0, . . . , an >=
innerAct(node)

foreach j < n do aj [inputs(i)]
seq LoopExit(node, t)

where Completed(node, t) = AdHocCompletionCond(node, t)

Remark on Completely Undefined ad Hoc Behavior. In [15, Sect.10.2.3
p.132] yet another understanding of “the sequence and number of performances”
of the inner activities of an adhoc process is stated, namely that “they can be
performed in almost (Sic) any order or frequency” and that “The performers
determine when activities will start, when they will end, what the next activity
will be, and so on”. The classification into sequential and parallel adHocOrder
seems to disappear in this interpretation, in which any behavior one can imag-
ine could be inserted. We have difficulties to believe that such a completely
non-deterministic understanding is intended as BPMN standard conform. To
clarify what the issue is about, we rewrite the transition rule for adhoc pro-
cesses by explicitly stating that as long as AdHocCompletionCond is not yet
true, repeatedly a multi-set of inner activities can be chosen and executed until
completion. The fact that the choice happens in a non-deterministic manner,
which will only be defined by the implementation or at runtime, is made explicit
by using the choose construct for ASMs (see Sect. 10 for an explanation). We
use A ⊆multi B to denote that A is a multi-set of elements from B .

UnconstrainedAdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i]
while not AdHocCompletionCond(node, t)

choose A ⊆multi innerAct(node)
forall a ∈ A do a[inputs(i)]

seq LoopExit(node, t)
where Completed(node, t) = AdHocCompletionCond(node, t)

Many issues remain open with such an interpretation. For example, can an
activity within an ad hod embedded subprocess be transactional? Can it be an

A Method for Verifiable and Validatable Business Process Modeling 99

iteration? What happens if during one execution round for a chosen subset A
of embedded activities one of these throws an exception that cannot be caught
within the embedded activity itself? Can ad hod subprocesses be nested? If yes,
how are exceptions and transactional requirements combined with nesting? Etc.

6.3 Subprocess Nodes

The main role of subprocesses is to represent modularization techniques. Their
role in creating an EventContext for exception handling, cancellation and com-
pensation has already been described above when formalizing the behavior of
intermediate events that are placed on the boundary of an activity. Their role in
showing parallel activities has been dealt with by the description of iterative (in
particular adhoc) processes. The normal sequence flow of their inner activities is
already formalized by the preceding description of the behavior of tasks, events
and gateways, using that subprocess activities in BPMN have the same sequence
flow connections as task activities. What remains to be described is their role
when calling an activity, which may involve an instantiation and passing data
from caller to callee, and when coming back from an activity.

For the discussion of calling and returning from subprocesses we can start from
the BPMN Best Practice Normal Form assumption as made for tasks, namely
that there is (at most) one incoming and (at most) one outgoing arc. For calling
a subprocess we can assume that when an arc incoming a subprocess is enabled,
the start event of the process if triggered. This stipulation comes up to be part of
the definition of the Triggered predicate for such start events, where we assume
for the token model that the event type is Link and that startToken con veys
the token information related to this link to the the token created when the sub-
process starts. If there is no incoming arc, then the standard stipulation is that
the subprocess (if it is not a compensation) is enabled when its parent process
is enabled. We can include this into the description of the previous case by con-
sidering that there is a special virtual arc in our graph representation that leads
from the parent process to each of its (parallel) subprocesses. We have dealt in
a similar way with returning from a subprocess via end events, which bring the
sequence flow back to the parent process (see the definition of EmitResult

for end events in Sect. 5). This is in accordance with the illustrations in
[15, Fig.10.14-16 p.108-110] for dealing with start/end events that are attached
to the boundary of an expanded subprocess (see also the characteristic example
in [15, Fig.10.48 p.127]).

There is not much one can do to formalize instantiation aspects since the stan-
dard document leaves most of the details open. For example concerning the in-
stantiation of a process called by a so-called independent subprocess it is stated
that “The called Process will be instantiated when called but it can be instanti-
ated by other Independent Sub-Process objects (in other diagrams) or by a mes-
sage from an external source” [15, Sect.9.4.2 p.57]. This does not mean that there
is not a certain number of issues to specify to make the subprocess concept clear
enough to allow for standard compatible implementations. These issues are re-
lated to problems of procedure concepts that are well-known from programming

100 E. Börger and B. Thalheim

languages. For example, how is the nesting of (recursive?) calls of independent
subprocesses dealt with, in particular in relation to the exception handling and
the transaction concept? Which binding mechanism for process instances and
which parameter passing concept is assumed? Are arbitrary interactions (sharing
of data, events, control) between caller and callee allowed? Etc.

7 Related Work

There are two specific papers we know on the definition of a formal semantics
of a subset of BPMN. In [17] a Petri net model is developed for a core subset
of BPMN which however, due to the well-known lack of high-level concepts in
Petri nets, “does not fully deal with: (i) parallel multi-instance activities; (ii) ex-
ception handling in the context of subprocesses that are executed multiple times
concurrently; and (iii) OR-join gateways. ” In [41] it is shown “how a subset of
the BPMN can be given a process semantics in Communicating Sequential Pro-
cesses”, starting with a formalization of the BPMN syntax using the Z notation
and offering the possibility to use the CSP-based model checker for an analy-
sis of model-checkable properties of business processes written in the formalized
subset of BPMN. Both papers present, for a subset of BPMN, technically rather
involved models for readers who are knowledgeable in Petri nets respectively
CSP, two formalisms one can hardly expect system analysts or business process
users to know or to learn. In contrast, the ASM descriptions we have provided
here cover every construct of the BPMN standard and use the general form of
if Event and Condition then Action rules of Event-Condition-Action systems,
which are familiar to most analysts and professionals trained in process-oriented
thinking. Since ASMs provide a rigorous meaning to abstract (pseudo-) code,
for the verification and validation of properties of ASMs one can adopt every
appropriate accurate method, without being restricted to mechanical (theorem
proving or model checking) techniques.

The feature-based definition of workflow concepts in this paper is an adap-
tation of the method used in a similar fashion in [35] for an instructionwise
definition, verification and validation of interpreters for Java and the JVM. This
method has been developed independently for the definition and validation of
software product lines [6], see [5] for the relation between the two methods.

8 Conclusion and Future Work

A widely referenced set of 23 workflow patterns appeared in [37] and was later ex-
tended by 20 additional workflow patterns in [33]. The first 23 patterns have been
described in various languages, among which BPMN diagrams [15, Sect.10.2], [38],
coloured Petri nets [33], an extension of a subset of BPMN [23]36, UML 2.0 in
comparison to BPMN [38]. A critical review of the list of these patterns and of

36 The extensions are motivated by the desire to capture also the additional 20 workflow
patterns.

A Method for Verifiable and Validatable Business Process Modeling 101

their classification appears in [10], where ASM descriptions are used to organize
the patterns into instances of eight (four sequential and four parallel) fundamen-
tal patterns. It could be interesting to investigate what form of extended BPMN
descriptions can be given for the interaction patterns in [3] (formalized by ASMs
in [4]), where the communication between multiple processes becomes a major is-
sue, differently from the one-process-view of BPMN diagrams dealt with in this
paper, which was motivated by the fact that in BPMN the collaboration between
different processes is restricted to what can be expressed in terms of events, mes-
sage exchange between pools and data exchange between processes.

One project of practical interest would be to use the high-level description
technique presented in this paper to provide for the forthcoming extension
BPMN 2.0 a rigorous description of the semantical consequences of the intended
extensions, adapting the abstract BPMN model developed here. For this reason
we list at the end of this section some of the themes discussed in this paper
where the present BPMN standard asks for more precision or some extension.
The scheme for WorkflowTransition is general enough to be easily adapt-
able to the inclusion of process interaction and resource usage concerns, should
such features be considered by the standardization comittee for an inclusion into
the planned extension of BPMN to BPMN 2.0, as has been advocated in [39].
To show that this project is feasible we intend to adapt the model developed
here for BPMN 1.0 to a refined model for BPMN 1.1.

One can also refine the ASM model for BPMN to an adaptation to the cur-
rent BPEL version of the ASM model developed in [20,21] for BPEL constructs.
The ASM refinement concept can be used to investigate the semantical relation
established by the mapping defined in [15, Sect.11] from process design realized
in BPMN to its implementation by BPEL executions. In particular one can try
to resolve the various issues discussed in [29] and related to the fact that BPMN
and BPEL reside at different levels of abstraction and that the mapping must
(be proved to) preserve the intended process semantics. This is what in the liter-
ature is refered to with the bombastic wording of a “conceptual mismatch” [30]
between BPMN and BPEL. One could also use CoreAsm [18,19] for a validation
of the models through characteristic workflow patterns.

Another interesting project we would like to see being undertaken is to define
an abstract model that either semantically unifies UML 2.0 activity diagrams
with BPMN diagrams or allows one to naturally instantiate its concepts to those
of the two business process description languages and thus explicitly point to
the semantic similarities and differences. This is feasable, it has been done for a
comparison of highly complex programming languages like Java and C# in [13]
using the corresponding ASM models developed for Java and C# in [35,11].

8.1 List of Some Themes for Reviewing the Current BPMN
Standard

We summarize here some of the issues concerning the BPMN standard that
have been discussed in the paper, where the reader can find the corresponding
background information.

102 E. Börger and B. Thalheim

1. Clarify the correlationmechanism formultiple events needed to start a process.
2. Clarify the intended consumption mode for events (in particular timer and

messages).
3. Specify the assumptions on the selection of input (see task node section).
4. Clarify the issues related to the interpretation of the classical iteration con-

cepts (e.g. which input is taken for while/loop constructs). In particular
clarify the concepts of upstream paths and of parallel paths.

5. Provide a precise definition of activities to be Completed , in partic-
ular with respect to the iteration concepts for ad hoc processes and
MultiInstTransition. Clarify what assumptions are made on the possible
simultaneous completion of multiple subprocess instances.

6. Provide a precise definition of interruption and cancel scopes, in particular
of the set Activity(p) of running instances of multiple instances within a
process instance p.

7. Define the behavioral impact of the concept of (multiple) tokens.
8. Clarify the issues related to the procedural concept of (in particular indepen-

dent) subprocesses and its relation to the underlying transaction concept.
9. Clarify the (possible nesting of the) exception handling and compensation

mechanism (in particular whether it is stack like, as seems to be suggested
by [15, Sect.11.13]).

10. Clarify the underlying transaction concept, in particular the interaction
between the transaction concepts in the listed non-normative references,
namely business transaction protocol, open nested transitions and web ser-
vices transactions in relation to the group concept of [15, Sect.9.7.4], which
is not restricted to one agent executing a pool process.

11. Clarify how undetermined the interpretation of OR-join gateways is intended
(specification of the functions selectProduce and selectConsume).

12. Clarify the issues related to the refinement of abstract BPMN concepts to
executable versions, in particular their mapping to block-structured BPEL
(see [29] for a detailed analysis of problems related to this question).

13. Clarify whether to keep numerous interdefinable constructs or to have a basic
set of independent constructs from where other forms can be defined in a
standard manner (pattern library).37

14. Clarify whether other communication mechanisms than the one in BPEL are
allowed.

15. Formulate a best practice discipline for BPMN process diagrams.
16. Add the consideration of resources.
17. Provide richer explicit forms of interaction between processes.

9 Appendix: The BPMN Execution Model in a Nutshell
We summarize here the rules explained in the main text. We do not repeat the
auxiliary definitions provided in the main text.
37 The problem of redundancy of numerous BPMN constructs has been identified also

in [28]. An analogous problem has been identified for UML 2.0 activity diagrams,
called “excessive supply of concepts” in [34].

A Method for Verifiable and Validatable Business Process Modeling 103

9.1 The Scheduling and Behavioral Rule Schemes

WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition ({r | r ∈ WorkflowTransition and
Fireable(r ,node)})

rule

The behavioral rule scheme (form of rules in WorkflowTransition):

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

9.2 Gateway Rules

AndSplitGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = Enabled(in)
CtlOp(node) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(andSplitToken(t , o), o) | o ∈ outArc(node)})

DataOp(node) = //performed for each selected gate
forall o ∈ outArc(node) forall i ∈ assignments(o)Assign(toi , fromi)

AndJoinGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = forall in ∈ inArc(node) Enabled(in)
CtlOp(node) =

let [in1, . . . , inn] = inArc(node)
let [t1, . . . , tn] = firingToken(inArc(node))

ConsumeAll({(tj , inj)) | 1 ≤ j ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

OrSplitGateTransition(node) =
let O = selectProduce(node) in WorkflowTransition(node,O)

where
CtlCond(node) = Enabled(in)
CtlOp(node,O) =

let t = firingToken(in)
Consume(t , in)

104 E. Börger and B. Thalheim

ProduceAll({(orSplitToken(t , o), o) | o ∈ O})
DataOp(node,O) =forall o ∈ O
forall i ∈ assignments(o)Assign(toi , fromi)

Constraints for selectProduce

selectProduce(node) �= ∅
selectProduce(node) ⊆ {out ∈ outArc(node) | OrSplitCond(out)}

OrJoinGateTransition(node) =
let I = selectConsume(node) in WorkflowTransition(node, I)

where
CtlCond(node, I) = (I �= ∅ and forall j ∈ I Enabled(j))
CtlOp(node, I) =

Produce(orJoinToken(firingToken(I)), out)
ConsumeAll({(tj , inj) | 1 ≤ j ≤ n}) where

[t1, . . . , tn] = firingToken(I)
[in1, . . . , inn] = I

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

GateTransitionPattern(node) =
let I = selectConsume(node)
let O = selectProduce(node) in

WorkflowTransition(node, I ,O)
where

CtlCond(node, I) = (I �= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

ProduceAll({(patternToken(firingToken(I), o), o) | o ∈ O})
ConsumeAll({(tj , inj) | 1 ≤ j ≤ n}) where

[t1, . . . , tn] = firingToken(I)
[in1, . . . , inn] = I

DataOp(node,O) = forall o ∈ O
forall i ∈ assignments(o) Assign(toi , fromi)

9.3 Event Rules

StartEventTransition(node) =
choose e ∈ trigger(node) StartEventTransition(node, e)

StartEventTransition(node, e) =
if Triggered(e) then Produce(startToken(e), out)

ConsumEvent(e)

EndEventTransition(node) =
if Enabled(in) then

Consume(firingToken(in), in)
EmitResult(firingToken(in), res(node),node)

A Method for Verifiable and Validatable Business Process Modeling 105

EmitResult(t , result ,node) =
if type(result) = Message then Send(mssg(node, t))
if type(result) ∈ {Error ,Cancel ,Compensation} then

Triggered(targetIntermEv(result ,node)) := true
// trigger intermediate event
Insert(exc(t), excType(targetIntermEvNode(result ,node))))

if type(result) = Cancel then
Callback(mssg(cancel , exc(t),node), listener(cancel ,node))

if type(result) = Link then Produce(linkToken(result), result)
if type(result) = Terminate then DeleteAllTokens(process(t))
if type(result) = None and IsSubprocessEnd(node) then

Produce(returnToken(targetArc(node), t), targetArc(node))
if type(result) = Multiple then

forall r ∈ MultipleResult(node) EmitResult(t , r ,node)

Callback(m,L) = forall l ∈ L Send(m, l)
DeleteAllTokens(p) = forall act ∈ Activity(p)

forall a ∈ inArc(act) forall t ∈ TokenSet(p) Empty(token(a, t))

IntermEventTransition(node) =
choose e ∈ trigger(node) IntermEventTransition(node, e)

IntermEventTransition(node, e) =
if Triggered(e) then

if not BoundaryEv(e) then
if Enabled(in) then let t = firingToken(in)

ConsumEvent(e)
Consume(t , in)
if type(e) = Link then Produce(linkToken(link), link)
if type(e) = None then Produce(t , out)
if type(e) = Message then

if NormalFlowCont(mssg(node), process(t))
then Produce(t , out)
else Throw(exc(mssg(node)), targetIntermEv(node))

if type(e) = Timer then Produce(timerToken(t), out)
if type(e) ∈ {Error ,Compensation,Rule} then
Throw(e, targetIntermEv(e))

if BoundaryEv(e) then
if active(targetAct(e)) then

ConsumEvent(e)
if type(e) = Timer then Insert(timerEv(e), excType(node))
if type(e) = Rule then Insert(ruleEv(e), excType(node))
if type(e) = Message then Insert(mssgEv(e), excType(node))
if type(e) = Cancel then choose exc ∈ excType(node) in

if Completed(Cancellation(e, exc)) then

106 E. Börger and B. Thalheim

Produce(excToken(e, exc), out)
else TryToCatch(e,node)

where
TryToCatch(ev ,node) =

if ExcMatch(ev) then Produce(out(ev))
else TrytoCatch(ev , targetIntermEv(node, ev))

Completed(Cancellation(e)) =
RolledBack(targetAct(e)) and Completed(Compensation(targetAct(e)))

9.4 Activity Rules

TaskTransition(task) = [if Enabled(in) then]
if ReadyForExec(task) then let t = firingToken(in)

[Consume(t , in)]
let i = selectInputSets (SomeAvail(inputSets(task)))

Exec(task , inputs(i))
currInput(task) := i

[seq
if Completed(task , t) then

[ProduceOutput(outputSets(task), currInput(task))]
[Produce(taskToken(task , t), out)]]

where
ProduceOutput(outputSets(t), i) =

choose o ∈ outputSets(t) with Defined(outputs(o)) and
IORules(t)(o, i) = true

Emit(outputs(o))

ReadyForExec(t) =⎧⎨
⎩

SomeAvail(inputSets(t)) if type(t) ∈ {Service,User}
Arrived(mssg(t)) [and Instantiate(t)] if type(t) = Receive
true if type(t) ∈ {Send ,Script ,Manual ,Reference}

Exec(t , i) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Send(inMssg(t)) if type(t) ∈ {Service, User}
Receive(mssg(t)) if type(t) = Receive
Send(mssg(t)) if type(t) ∈ {Send}
Call(performer(action(t , i)),action(t , i)) if type(t) ∈ {Script , Manual}
Exec(taskRef (t), i) if type(t) = Reference
skip if type(t) = None

LoopTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if testTime(node) = before then
while loopCond(node, t) LoopBody(node, t)

if testTime(node) = after then

A Method for Verifiable and Validatable Business Process Modeling 107

until loopCond(node, t) LoopBody(node, t)
[seq LoopExit(node, t)]

where
LoopBody(n, t) =

loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node, loopToken(t , loopCounter(node, t) + 1)
[, inputs(currInput(node))])

LoopEntry(n, t) =
loopCounter(n, t) := 0
[Consume(t , in)]
[currInput(n) := selectInputSets(SomeAvail(inputSets(n)))]

LoopExit(n, t) =
if Completed(n, t) then

[ProduceOutput(outputSets(n), currInput(n))]
[Produce(loopExitToken(t , loopCounter(n, t)), out)]

Completed(n, t) = LoopCompleted(n, t) if n ∈ Loop(t)

MultiInstTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if miOrdering(node) = Sequential then
foreach i ≤ miNumber(node)

loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node,miToken(t , i)[, inputs(currInput(node))])

seq LoopExit(node, t)
if miOrdering(node) = Parallel then

forall i ≤ miNumber(node)
Start(iterBody(node,miToken(t , i)[, inputs(currInput(node))]))

seq
if miFlowCond = All then

if Completed(node, t) then LoopExit(node, t)
if miFlowCond = None then EveryMultInstExit(node, t)
if miFlowCond = One then OneMultInstExit(node, t)
if miFlowCond = Complex then
ComplMultInstExit(node, t)

where
Completed(n, t) = forall i ≤ miNumber(n)
Completed(iterBody(n,miToken(t , i)[. . .]))
ComplMultInstExit(n, t) = // for miOrdering(n) = Parallel

AlreadyCompleted := ∅ // initially no instance is completed
seq

while AlreadyCompleted �= {i | i ≤ miNumber(n)} do
if NewCompleted(n, t) �= ∅ then

if | AlreadyCompleted |< tokenNo(complexMiFlowCond)
then

108 E. Börger and B. Thalheim

if TokenTime(complexMiFlowCond) then
let i0 = selectNewCompleted in

Produce(miExitToken(t , i0), out)
Insert(i0,AlreadyCompleted)

[ProduceOutput(outputSets(n), currInput(n))]
else forall i ∈ NewCompleted(n, t)
Insert(i ,AlreadyCompleted)

NewCompleted(n, t) = {i ≤ miNumber(n) |
Completed(iterBody(n,miToken(t , i)[. . .]))
and i �∈ AlreadyCompleted}

EveryMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) =| {i | i ≤ miNumber(n)} |
TokenTime(complexMiFlowCond) = true

OneMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) = 1
TokenTime(complexMiFlowCond) = true

UnconstrainedAdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i]
while not AdHocCompletionCond(node, t)

choose A ⊆multi innerAct(node)
forall a ∈ A do a[inputs(i)]

seq LoopExit(node, t)

AdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i]
while not AdHocCompletionCond(node, t)

if adHocOrder(node) = Parallel then forall a ∈ innerAct(node) do
a[inputs(i)]
if adHocOrder(node) = Sequential then
let< a0, . . . , an >= innerAct(node)

foreach j < n do aj [inputs(i)]
seq LoopExit(node, t)

where Completed(node, t) = AdHocCompletionCond(node, t)

10 Appendix: ASMs in a Nutshell

The ASM method for high-level system design and analysis (see the AsmBook
[12]) comes with a simple mathematical foundation for its three constituents: the

A Method for Verifiable and Validatable Business Process Modeling 109

notion of ASM, the concept of ASM ground model and the notion of ASM refine-
ment. For an understanding of this paper only the concept of ASM is needed. For
the concept of ASM ground model (read: mathematical system blueprint) and
ASM refinement see [9].

10.1 ASMs = FSMs with Arbitrary Locations

The instructions of a Finite State Machine (FSM) program are pictorially de-
picted in Fig. 1, where i , j1, . . . , jn are internal (control) states, condν (for
1 ≤ ν ≤ n) represents the input condition in = aν (reading input aν) and
ruleν the output action out := bν (yielding output bν), which goes together with
the ctl state update to jν . Control state ASMs have the same form of programs
and the same notion of run, but the underlying notion of state is extended from
the following three locations:

a single internal ctl state that assumes values in a not furthermore structured
finite set
two input and output locations in, out that assume values in a finite alphabet

to a set of possibly parameterized locations holding values of whatever types.
Any desired level of abstraction can be achieved by permitting to hold values of
arbitrary complexity, whether atomic or structured: objects, sets, lists, tables,
trees, graphs, whatever comes natural at the considered level of abstraction.
As a consequence an FSM step, consisting of the simultaneous update of the
ctl state and of the output location, is turned into an ASM step consisting of
the simultaneous update of a set of locations, namely via multiple assignments
of the form loc(x1, . . . , xn) := val , yielding a new ASM state.

This simple change of view of what a state is yields machines whose states can
be arbitrary multisorted structures, i.e. domains of whatever objects coming with
predicates (attributes) and functions defined on them, structures programmers
nowadays are used to from object-oriented programming. In fact such a mem-
ory structure is easily obtained from the flat location view of abstract machine
memory by grouping subsets of data into tables (arrays), via an association of
a value to each table entry (f , (a1, . . . , an)). Here f plays the role of the name
of the table, the sequence (a1, . . . , an) the role of a table entry, f (a1, . . . , an) de-
notes the value currently contained in the location (f , (a1, . . . , an)). Such a table
represents an array variable f of dimension n, which can be viewed as the cur-
rent interpretation of an n-ary “dynamic” function or predicate (boolean-valued
function). This allows one to structure an ASM state as a set of tables and thus
as a multisorted structure in the sense of mathematics.

In accordance with the extension of unstructured FSM control states to ASM
states representing arbitrarily rich structures, the FSM-input cond ition is ex-
tended to arbitrary ASM-state expressions, namely formulae in the signature of
the ASM states. They are called guards since they determine whether the up-
dates they are guarding are executed.38 In addition, the usual non-deterministic
38 For the special role of in/output locations see below the classification of locations.

110 E. Börger and B. Thalheim

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 1. Viewing FSM instructions as control state ASM rules

interpretation, in case more than one FSM-instruction can be executed, is re-
placed by the parallel interpretation that in each ASM state, the machine exe-
cutes simultaneously all the updates which are guarded by a condition that is
true in this state. This synchronous parallelism, which yields a clear concept of
locally described global state change, helps to abstract for high-level modeling
from irrelevant sequentiality (read: an ordering of actions that are independent
of each other in the intended design) and supports refinements to parallel or
distributed implementations.

Including in Fig. 1 ctl state = i into the guard and ctl state := j into the
multiple assignments of the rules, we obtain the definition of a basic ASM as a set
of instructions of the following form, called ASM rules to stress the distinction
between the parallel execution model for basic ASMs and the sequential single-
instruction-execution model for traditional programs:

if cond then Updates

where Updates stands for a set of function updates f (t1, . . . , fn) := t built from
expressions ti , t and an n-ary function symbol f . The notion of run is the same
as for FSMs and for transition systems in general, taking into account the syn-
chronous parallel interpretation.39 Extending the notion of mono-agent sequential
runs to asynchronous (also called partially ordered) multi-agent runs turns FSMs
into globally asynchronous, locally synchronous Codesign-FSMs [27] and similarly
basic ASMs into asynchronous ASMs (see [12, Ch.6.1] for a detailed definition).

The synchronous parallelism (over a finite number of rules each with a finite
number of to-be-updated locations of basic ASMs) is often further extended by
a synchronization over arbitrary many objects in a given Set , which satisfy a
certain (possibly runtime) Property:

forall x [∈ Set][with Property(x)] do
rule(x)

39 More precisely: to execute one step of an ASM in a given state S determine all the
fireable rules in S (s.t. cond is true in S), compute all expressions ti , t in S occuring
in the updates f (t1, . . . , tn) := t of those rules and then perform simultaneously all
these location updates if they are consistent. In the case of inconsistency, the run is
considered as interrupted if no other stipulation is made, like calling an exception
handling procedure or choosing a compatible update set.

A Method for Verifiable and Validatable Business Process Modeling 111

standing for the execution of rule for every object x , which is element of Set and
satisfies Property. Sometimes we omit the key word do. The parts ∈ Set and
with Property(x) are optional and therefore written in square brackets.

Where the sequential execution of first M followed by N is needed we denote
it by M seq N , see [12] for a natural definition in the context of the synchronous
parallelism of ASMs. We sometimes use also the following abbreviation for iter-
ated sequential execution, where n is an integer-valued location:

foreach i ≤ n do rule(i) =
rule(1) seq rule(2) seq . . . seq rule(n)

ASM Modules. Standard module concepts can be adopted to syntactically
structure large ASMs, where the module interface for the communication with
other modules names the ASMs which are imported from other modules or
exported to other modules. We limit ourselves here to consider an ASM module
as a pair consisting of Header and Body. A module header consists of the name
of the module, its (possibly empty) import and export clauses, and its signature.
As explained above, the signature of a module determines its notion of state and
thus contains all the basic functions occurring in the module and all the functions
which appear in the parameters of any of the imported modules. The body of
an ASM module consists of declarations (definitions) of functions and rules. An
ASM is then a module together with an optional characterization of the class
of initial states and with a compulsory additional (the main) rule. Executing an
ASM means executing its main rule. When the context is clear enough to avoid
any confusion, we sometimes speak of an ASM when what is really meant is an
ASM module, a collection of named rules, without a main rule.

ASM Classification of Locations and Functions. The ASM method im-
poses no a priori restriction neither on the abstraction level nor on the com-
plexity nor on the means of definition of the functions used to compute the
arguments and the new value denoted by ti , t in function updates. In support
of the principles of separation of concerns, information hiding, data abstraction,
modularization and stepwise refinement, the ASM method exploits, however,
the following distinctions reflecting the different roles these functions (and more
generally locations) can assume in a given machine, as illustrated by Figure 2
and extending the different roles of in, out , ctl state in FSMs.

A function f is classified as being of a given type if in every state, every
location (f , (a1, . . . , an)) consisting of the function name f and an argument
(a1, . . . , an) is of this type, for every argument (a1, . . . , an) the function f can
take in this state.

Semantically speaking, the major distinction is between static and dynamic lo-
cations. Static locations are locations whose values do not depend on the dynam-
ics of states and can be determined by any form of satisfactory state-independent
(e.g. equational or axiomatic) definitions. The further classification of dynamic
locations with respect to a given machine M supports to distinguish between
the roles different ‘agents’ (e.g. the system and its environment) play in using
(providing or updating the values of) dynamic locations. It is defined as follows:

112 E. Börger and B. Thalheim

controlled locations are readable and writable by M ,
monitored locations are for M only readable, but they may be writable by
some other machine,
output locations are by M only writable, but they may be readable by some
other machine,
shared locations are readable/writable by M as well as by some other ma-
chine, so that a protocol will be needed to guarantee the consistency of
writing.

Monitored and shared locations represent an abstract mechanism to specify
communication types between different agents, each executing a basic ASM.
Derived locations are those whose definition in terms of locations declared as
basic is fixed and may be given separately, e.g. in some other part (“module” or
“class”) of the system to be built. The distinction of derived from basic locations
implies that a derived location can in particular not be updated by any rule of
the considered machine. It represents the input-output behavior performed by
an independent computation. For details see the AsmBook [12, Ch.2.2.3] from
where Figure 2 is taken.

A particularly important class of monitored locations are selection locations,
which are frequently used to abstractly describe scheduling mechanisms. The
following notation makes the inherent non-determinism explicit in case one does
not want to commit to a particular selection scheme.

choose x [∈ Set][with Property(x)][do]
rule(x)

This stands for the ASM executing rule(x) for some element x , which is arbi-
trarily chosen among those which are element of Set and satisfy the selection
criterion Property. Sometimes we omit the key word do. The parts ∈ Set and
with Property(x) are optional.

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Fig. 2. Classification of ASM functions, relations, locations

A Method for Verifiable and Validatable Business Process Modeling 113

We freely use common notations with their usual meaning, like let x = t in R,
if cond then R else S , list operations like zip((xi)i , (yi)i) = (xi , yi)i , etc.

Non-determinism, Selection and Scheduling Functions. It is adequate to
use the choose construct of ASMs if one wants to leave it completely unspecified
who is performing the choice and based upon which selection criterion. The only
thing the semantics of this operator guarantees is that each time one element
of the set of objects to choose from will be chosen. Different instances of a
selection, even for the same set in the same state, may provide the same element
or maybe not. If one wants to further analyze variations of the type of choices
and of who is performing them, one better declares a select ion function, to
select an element from the underlying set of Cand idates, and writes instead of
choose c ∈ Cand do R(c) as follows, where R is any ASM rule:

let c = select(Cand) in R(c)

The functionality of select guarantees that exactly one element is chosen. The
let construct guarantees that the choice is fixed in the binding range of the let.
Declaring such a function as dynamic guarantees that the selection function ap-
plied to the same set in different states may return different elements. Declaring
such a function as controlled or monitored provides different ownership schemes.
Naming these selection functions allows the designer in particular to analyze and
play with variations of the selection mechanisms due to different interpretations
of the functions.

Acknowledgement. We thank the following colleagues for their critical remarks
on preliminary versions of this paper: M. Altenhofen, B. Koblinger, M. Momotko,
A. Nowack.

References

1. OMG Unified Modeling Language superstructure (final adopted specification, ver-
sion 2.0) (2003), http://www.omg.org

2. Web Services Business Process Execution Language version 2.0. OASIS Standard,
(April 11,2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

3. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

4. Barros, A., Börger, E.: A compositional framework for service interaction pat-
terns and interaction flows. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

5. Batory, D., Börger, E.: Modularizing theorems for software product lines: The
Jbook case study,Universal Computer Science,Special ASM Issue(2008): Coupling
Design and Verification in Software Product Lines. In: Hartmann, S., Kern-
Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 1–4. Springer, Heidelberg
(2008)

http://www.omg.org
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

114 E. Börger and B. Thalheim

6. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. In: ACM TOSEM, ASM (October 1992)

7. Börger, E.: High-level system design and analysis using Abstract State Machines.
In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998, vol. 1641, pp. 1–43. Springer,
Heidelberg (1999)

8. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237–
257 (2003)

9. Börger, E.: Construction and analysis of ground models and their refinements as
a foundation for validating computer based systems. Formal Aspects of Comput-
ing 19, 225–241 (2007)

10. Börger, E.: Modeling workflow patterns from first principles. In: Parent, C., Schewe,
K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 1–20.
Springer, Heidelberg (2007)

11. Börger, E., Fruja, G., Gervasi, V., Stärk, R.: A high-level modular definition of the
semantics of C#. Theoretical Computer Science 336(2–3), 235–284 (2005)

12. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

13. Börger, E., Stärk, R.F.: Exploiting Abstraction for Specification Reuse. The
Java/C# Case Study. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 42–76. Springer, Heidelberg (2004)

14. Börger, E., Thalheim, B.: On defining the behavior of OR-joins in business process
models(in preparation)

15. BPMI.org. Business Process Modeling Notation Specification v.1.0. dtc/2006-02-01
(2006), http://www.omg.org/technology/documents/spec catalog.htm

16. BPMI.org. Business Process Modeling Notation Specification v.1.1. formal/2008-
01-17 (2008), http://www.omg.org/spec/BPMN/1.1/PDF

17. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri nets. Technical Report 7115, Queensland University of
Technology, Brisbane (2007)

18. Farahbod, R, et al.: The CoreASM Project, http://www.coreasm.org
19. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An Extensible ASM Execution

Engine. Fundamenta Informaticae XXI (2006)
20. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and validation of the busi-

ness process execution language for web services. In: Zimmermann, W., Thalheim,
B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg (2004)

21. Farahbod, R., Glässer, U., Vajihollahi, M.: An Abstract Machine Architecture for
Web Service Based Business Process Management. Int. J. Business Process Inte-
gration and Management 1(4), 279–291 (2006)

22. Freund, J.: BPM-software–2008. Berlin, Germany (2008),
http://www.comunda.com

23. Grosskopf, A.: xBPMN. Formal control flow specification of a BPMN based process
execution language. Master’s thesis, HPI at Universität Potsdam, pp. 1-142 (July
2007)

24. Gruhn, V., Laue, R.: How style checking can improve business process models.
In: Proc. 8th International Conference on Enterprise Information Systems (ICEIS
2006), Paphos, Cyprus (May 2006)

25. Gruhn, V., Laue, R.: What business process modelers can learn from programmers.
Science of Computer Programming 65, 4–13 (2007)

26. Knuth, D.E.: Literate Programming. Number 27 in CSLI Lecture Notes. Center
for the Study of Language and Information at Stanford/ California (1992)

http://www.omg.org/technology/documents/spec_catalog.htm
http://www.omg.org/spec/BPMN/1.1/PDF
http://www.coreasm.org
http://www.comunda.com

A Method for Verifiable and Validatable Business Process Modeling 115

27. Lavagno, L., Sangiovanni-Vincentelli, A., Sentovitch, E.M.: Models of computation
for system design. In: Börger, E. (ed.) Architecture Design and Validation Methods,
pp. 243–295. Springer, Heidelberg (2000)

28. Listiani, M.: Review on business process modeling notation. Master’s thesis, Insti-
tute of Telematics of Hamburg University of Technology (July 2008)

29. Ouyang, C., Dumas, M., van der Aalst, W.M.P., Hofstede, A.H.M.: From business
process models to process-oriented software systems: The BPMN to BPEL way.
Technical Report 06-27, BPMcenter (2006),
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

30. Recker, J., Mendling, J.: Research Issues in Systems Analysis and Design,
Databases and Software Development. In: Chapter Lost in Business Process Model
Translations.How a Structured Approach helps to Identify Conceptual Mismatch,
pp. 227–259. IGI Publishing, Hershey (2007)

31. Russel, N., ter Hofstede, A., Edmond, D., van der Aalst, W.M.P.: Workflow data
patterns. BPM-04-01 at BPMcenter.org (2004)

32. Russel, N., ter Hofstede, A., Edmond, D., van der Aalst, W.M.P.: Workflow re-
source patterns. In: BPM-04-07 at BPMcenter.org (2004)

33. Russel, N., ter Hofstede, A., van der Aalst, W.M.P., Mulyar, N.: Workflow control-
flow patterns: A revised view. BPM-06-22 July (2006), at
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

34. Schattkowsky, T., Förster, A.: On the pitfalls of UML 2 activity modeling. In:
International Workshop on Modeling in Software Engineering (MISE 2007), IEEE
Computer Society Press, Los Alamitos (2007)

35. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

36. Störrle, H., Hausman, J.H.: Towards a formal semantics of UML 2.0 activities. In:
Proc. Software Engineering 2005, (2005)

37. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(3), 5–51 (2003)

38. White, S.A.: Process modeling notations and workflow patterns (2007).
pbmn.org/Documents (download September)

39. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A., Russel, N.: On the
suitability of BPMN for business process modelling. In:4th Int. Conf. on Business
Process Management (2006) (submitted)

40. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A., Russel, N.:
Pattern-based analysis of BPMN - an extensive evaluation of the control-flow, the
data and the resource perspectives (revised version). BPM-06-17 at BPMcenter.org
(2006)

41. Wong, P.Y.H., Gibbons, J.: A process semantics fo BPMN. Preprint Oxford Uni-
versity Computing Lab URL (July 2007), http://web.comlab.ox.ac.uk/oucl/
work/peter.wong/pub/bpmn extended.pdf

42. Wynn, M.T., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Achieving
a general, formal and decidable approach to the OR-join in workflow using reset
nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
423–443. Springer, Heidelberg (2005)

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn_extended.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn_extended.pdf

Service Oriented Architecture:
Overview and Directions

Boualem Benatallah and Hamid R. Motahari Nezhad

School of Computer Science and Engineering
The University of New South Wales

Australia
{boualem,hamidm}@cse.unsw.edu.au

1 Introduction

The push toward business automation, motivated by opportunities in terms of
cost savings and higher quality, more reliable executions, has generated the need
for integrating the different applications. Integration has been one of the main
drivers in the software market during the late nineties and into the new millen-
nium. It has led to a large body of research and development in areas such as
data integration [26], software components integration, enterprise information
integration (EII), enterprise applications integration (EAI), and recently service
integration and composition [2,11,16,12].

Service oriented architectures (SOAs) provide an architectural paradigm and
abstractions that allow to simplify integration [2,21]. There a number of tech-
nologies available to realize SOA. Among them, Web services and the set of re-
lated specifications (referred to as WS-* family), and also services that are built
following the REST (REspresentation State Transfer) architecture [8] (called
RESTful services) are gaining the momentum for integration at the data level.

One of the main facilitators of integration in WS-* approach is standardiza-
tion. Standardization is a key to simplifying interoperability: instead of having
to interact with heterogeneous systems, each with its own transport protocol,
data format, interaction protocol, and the like, applications can interact with
systems that are much more homogeneous. More specifically, Web services stan-
dards foster support of loosely coupled and decentralized interactions mainly at
the application level. The main feature of RESTful approach is the simplicity
of service development and usage. This architectural style has been adopted in
the offering of data services [4,1] which is a major advance in data-level integra-
tion. AJAX [9], which is an enabler of an ad-hoc service composition approaches
known as mashups [17], is also based on REST. Mashup applications enable in-
tegration at the presentation level. This refers to integration of graphical user
interfaces (GUIs) of applications.

In this chapter, we briefly survey the different specifications and approaches
in SOA and evaluate them in terms of their contributions to integration. We
propose a conceptual framework for understanding the integration problem as
well for analyzing existing solutions. We believe that viewing the different ap-
proaches to interoperability in the context of this framework will make it easier

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 116–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Service Oriented Architecture: Overview and Directions 117

to identify the commonalities and contrasts of existing standards and specifica-
tions, discover gaps, and better leverage existing standards to provide automated
support to Web service interoperability.

In the following, in Section 2, we present the conceptual framework in terms
of integration layers going from low level, which are horizontal, to higher levels,
which may not be needed in all integration scenarios (Section 2.2). Next, we
provide an overview of integration solutions before SOA in the context of pro-
posed architecture (Section 2.3). In Section 3, we introduce the main existing
technologies for realization of SOA (Section 3.1). Then, we use the proposed
integration layers to evaluate SOA realization approaches (Section 3.2). In Sec-
tion 4, we outline future directions in SOA to further help developers and users
in simplifying the problem of integration, and conclude this chapter.

2 Software Integration

2.1 Motivating Example

As an example, consider the two business enterprises depicted in Figure 1, ex-
posing their functionalities as services. Integration is important in two different
scenarios: integrating internal systems of each enterprise (referred to as “en-
terprise application integration” (EAI), as well), and integration with external
entities (referred to as “business-to-business integration” (B2B), as well). In the
internal of an enterprise, there is a need to integrate data and applications re-
lated to various systems. For instance, if these enterprises work in the domain
of procurement and sales in a supermarket chain, then they may maintain a
database for storing procurement data and a database for storing inventory and
sales data. They may also need a data warehouse (DW) for storing historical
sales transactions, which needs to collect and integrate data from these two data
sources. Each of these enterprises may also implement a business process for

Fig. 1. Integration scenarios: EAI (enterprise application integration) and B2B
(Business-to-Business)

118 B. Benatallah and H.R. Motahari Nezhad

fulfilling its business objectives, which describes how, e.g., orders are processed
from the time that they arrive up to the time that goods are shipped, in terms
of data and control flows.

From the perspective of external interactions, the pre-requisite is that services
on each enterprise can communicate seamlessly (e.g., exchange messages) with
those of its partner. In addition, there may be a need for properties such as secu-
rity and guaranteed delivery. Furthermore, advanced features such transactions
may be needed in the interactions between the two enterprises. Moreover, they
should be able to understand the content of exchanged messages. The develop-
ers of the client enterprise also need to understand the order in which messages
are expected by the partner services, which is captured in the business protocol
of the services. Similarly, policies that govern the interactions between services
should be known to service clients. Finally, developers in each enterprise may
need to integrate results retuned from partner services, e.g., the current location
of a shipment, with other external services, e.g., Google map, to visualize it at
the presentation level.

In the following, we use the above description of requirements to present
different layers of integration.

2.2 Integration Layers

By analogy with computer networks, we believe it is useful to study the integra-
tion in terms of layers, which address various parts of problem at different level
of abstractions (Figure 2). Typically, the structuring in layers goes from lower
level layers, which are more horizontal (needed by most or all interactions), to
higher layers, which build on top on the lower ones and may or may not be
needed depending on the application.

Communication layer. The first step for any application to interact to each
other is to be able to exchange information. This is mainly achieved through the
definition and using a protocol for transporting information, regardless of the
syntax and semantics of the information content. Examples of such protocols
are HTTP for transforming information on the Internet, IIOP in CORBA, and
VAN in EDI standards [16].

Data layer. The integration at this layer means that the applications should
seamlessly understand the content of data (documents and messages) that are
exchanged between them. The interoperability issues at this layer occur in the
syntax, structure and semantics of the data elements in the exchanged informa-
tion. Integration at this layer is mainly achieved through offering mediators and
languages (e.g., ETL) for transformation and mapping to convert data from one
format to another. Although much progress has been made to facilitate data-
level interoperation, however, still there is no silver bullet solution [26]. Given
the current advances, users still play a major role in identifying the mismatches
and developing their mappings and transformation.

Service Oriented Architecture: Overview and Directions 119

Data Layer

Presentation Layer

Business Protocol

Policies and non-
functional properties

Data Layer

B
usiness

Logic
Layer

Presentation Layer

Functional Interface

Business Protocol

Policies and non-
functional properties

Application Application

Communication Layer Communication Layer

Functional Interface

Basic CoordinationBasic Coordination

Fig. 2. Application integration layers

Business logic layer. Integration at this layer refers to integrating standalone
applications with defined interfaces (APIs), behavioral constraints, and also non-
functional constraints. Integration at this layer can be divided into the following
sub-layers:

– Basic coordination. This layer is concerned with requirements and proper-
ties related to the exchange of a set of message among two or more partners.
For example in both EAI and B2B scenarios, two services may need to co-
ordinate to provide atomicity based on 2-Phase commit. Other examples of
specifications at this layer are federated security management specifications.
We consider this kind of coordination to be horizontal, meaning that such
coordination are generally useful and can be applied in many business sce-
narios, and that is why we consider it at a lower level of abstraction in the
business logic layer.

– Functional interfaces. The interface of a service declares the set of operations
(messages) that are supported by the application. For example, a procure-
ment service provides operations to lodge an order, and track its progress.
As another example, a data service provides operations to access and manip-
ulate data. The integration at this layer may imply finding correspondences
and the mappings between the signatures of operations of the two services
to be integrated.

– Business protocol. The business protocol gives the definition of the allowed
operation invocation (or message exchange) sequences. Heterogeneities be-
tween business protocols can arise due to different message ordering con-
straints, or due to messages that one service expects (sends) but that the
interacting partner is not prepared to send (receive). For example, a service
may expect an acknowledgment in response to a sent message, while the
partner does not issue such message.

– Policies and non-functional properties. The definition of an application may
include policies (e.g., privacy policies) and other non-functional properties

120 B. Benatallah and H.R. Motahari Nezhad

(e.g., QoS descriptions such as response time) that are useful for partners to
understand if they can/want interact with the application. The interoper-
ability issues at this layer can be categorized into two classes: in expressing
policies, in which case they are similar to those of data layer. For example,
two applications may declare conceptually equivalent policy assertions, but
using different syntax (i.e., element names), structure (i.e., element type and
values) and semantics. The other class of interoperation issues refers to dif-
ferences between the policies of two applications. For instance, differences
in the offered/expected quality of service, e.g., response time, price, etc.
Resolution of mismatches of this type may require negotiation and making
agreements between applications.

Presentation layer. The integration in this layer refers to constructing appli-
cations by integrating components at the graphical user interface (UI) level [5].
UI-level integration fosters integration at a higher level of abstraction, where
graphical representations of components are composed to build a new applica-
tion. Integration issues at this layer include definition of a language and model
for representation of components so that the integration is facilitated [5].

2.3 Integration Technologies before SOA

In this section, we give a brief overview of main integration technologies prior
to Web services, and other realization of SOA.

2.3.1 Data Integration
Data integration has been subject of research for many years most notably in the
context of databases [13,26]. The goal of data integration systems is to build ap-
plications by integrating heterogeneous data sources. Data integration systems
have three elements: source schema, mediated (target) schema, and the mapping
between them. Source schema refer to the data model of data sources to be
integrated, mediated schema is the view of the integrated system from the exist-
ing data sources, and the mapping provide mechanisms for transforming queries
and data from the integrated systems to those of data sources. A closely related
area in this context is the schema mapping that aims at providing automated
assistance for mapping schema definition of one data source into another [23].
These provide techniques for identifying syntactic, structural and semantic het-
erogeneities between schemas.

Note that in data integration systems, little cooperation from the component
applications is needed, as one can always tap into the applications databases,
e.g., by the means of SQL queries. The drawback of this approach is that it
requires a significant effort to understand the data models and to maintain the
mediated schema in the wake of changes in the data sources. In data integration
systems, the integration is achieved through building new applications through
composition of data sources at the data layer, and integration at the communi-
cation layer is achieved through tight coupling with integrated data sources.

Service Oriented Architecture: Overview and Directions 121

2.3.2 Business Logic Integration
The integration of applications at the business logic level has been thoroughly
studied in the last thirty years giving rise to technologies such as remote pro-
cedure calls (PRCs), object brokers (such as DCOM and CORBA), message
brokers, electronic data interchange (EDI) and also standard specifications such
as RosettaNet [2]. We can broadly categorize exiting solutions into RPC-based
and message-oriented approaches.

Examples of RPC-based approaches include DCOM, Java RMI and CORBA,
which enable calling operations on remote interfaces and so to integrate appli-
cations. They provide mechanisms for communication level integration, as well,
but leave the data-level integration to approaches in data integration systems.
On the other hand, message-oriented approaches such as EDI and RosettaNet
target integration at the business process (business protocol) level through stan-
dardization. EDI provides VPN network and associated protocols for integration
at the communication layer, and proposes to address data level issues through
offering standardized business document formats. RosettaNet mainly provides
specifications for integration at the business protocol level between applications.
Finally, message-oriented middleware, suited for EAI scenarios, fosters integra-
tion through establishing a shared communication medium between parties, and
the development of adapters (see [2,16,12] for a comparative study of these
approaches).

3 Service Oriented Architecture

Service Oriented Architecture (SOA) is an architectural style that provides
guidelines on how services are described, discovered and used [2,21]. The purpose
of this architecture is to address the requirements of application development for
distributed information systems, which are loosely-coupled and potentially het-
erogeneous. In SOA, software applications are packaged as “services”. Services
are defined to be standards-based, platform- and protocol-independent to ad-
dress interactions in heterogeneous environments. In the following, we give on
overview of main realization of SOA and compare them in the context of pro-
posed integration layers.

3.1 SOA Realization Technologies

Currently, there are four main approaches in SOA that provide specifications and
standards for interoperation among services: the WS-* family, ebXML1, semantic
Web services2, and REpresentational State Ttansfer (REST)-ful services.

The WS in WS-* family stands for “Web Services”. Web services have be-
come the preferred implementation technology for realizing the SOA paradigm.
Web services rely, conceptually, on SOA, and, technologically, on open stan-
dard specifications and protocols. WS-* specifications are a group of standards
1 http://www.ebXML.org
2 http://www.daml.org/services

122 B. Benatallah and H.R. Motahari Nezhad

mainly proposed by industrial software vendors that develop specifications in an
incremental and modular manner: specifications are introduced in a bottom-up
fashion where the basic building blocks are simple, horizontal specifications. The
specifications stack is gradually extended, with specifications at a higher level of
abstractions built on top of more foundational ones.

ebXML (Electronic Business XML) is a joint initiative of the United Nations
(UN/CEFACT) and OASIS3 as a global electronic business standard. ebXML
provides a framework for business-to-business integration and introduces a suite
of specifications that enable businesses to locate their partners and conduct busi-
ness based on a collaborative business process. It takes a top-down approach by
allowing collaborations between partners to come up with a mutually negotiated
agreement at a higher level, i.e., business process and contracts, and then work-
ing down towards how to exchange concrete messages. The technical architecture
of ebXML provides a set of specifications for following fundamental components:
(i) business process specification schema (BPSS) provides a framework to sup-
port execution of business collaborations consisting of business transactions, (ii)
messaging services and security (ebMS), (iii) collaboration protocol profile and
agreements (CPP/A), and (v) core components.

The semantic web services (SWS) aims to provide Web services with a rich
semantic description of capabilities and contents in unambiguous and computer-
interpretable languages to improve the quality and robustness of activities in
the lifecycle of Web services including service discovery and invocation, auto-
mated composition, negotiation and contracting, enactment, monitoring and re-
covery [15,14,3]. Current efforts in this area can be organized into two categories,
both of which assume using of a shared ontology between trading partners: (i)
bringing semantic to Web services by defining and using semantic Web markup
languages such as OWL-S [15], or WSMO [3], and (ii) incorporating semantic
information by annotating messages and operations (supported by ontologies)
of Web service specifications such as WSDL using their extensibility points and
offering specifications such as WSDL-S [14].

The key component of the first category is using a language for the descrip-
tion of Web services. OWL-S (formerly known as DAML-S) is an OWL-based
ontology for Web services in this category. OWL-S consists of three interrelated
subontologies, known as the serviceProfile, serviceModel, and serviceGrounding.
The serviceProfile expresses what a service does in terms of functional and non-
functional properties, and its role is similar to CPP in ebXML-based approach.
The serviceModel describes how a service works in terms of the workflow and
possible execution paths of the service. The serviceGrounding maps the abstract
constructs of the process model onto concrete specifications of message format
and protocols. WSMO is another proposal in this area, which focuses more on
providing a framework for developing semantic Web services. For comparison of
OWL-S and WSMO refer to [22]. Here, we only discuss WSDL-S and OWL-S
approach, which is currently more mature, compared to WSMO.

3 http://www.oasis-open.org

Service Oriented Architecture: Overview and Directions 123

REST is an architectural style that identifies how resources in a network, and
specially World Wide Web, are defined, addressed and can be accessed [8]. In
this architecture, applications in the network are modeled as a set of resources,
which are uniquely addressable using a URI. Each resource also supports a con-
strained set of well-defined operations, and a constraint set of content types,
e.g., XML, HTML, CSV, text, etc. REST adopts HTTP protocol for communi-
cation between resources, and therefore, the core operations of REST, i.e., GET,
POST, PUT, and DELETE are those of HTTP. REST promotes a client-server,
stateless and layered architecture. Due to its simplicity, which makes it scalable
to the Internet, it has been adopted for implementing services (such services
are called RESTful services). A client application that interacts with a resource
(service) should know its URI address and can request to execute one of the core
REST operations on the resource. The client should also know the data format
of the output data. Therefore, the client developer has to read the documenta-
tion of the service to make it work with the service, or the data format may be
shipped along with the message content.

The main differences between RESTful services with WS-*, which using SOAP
on top of HTTP to provide additional functionalities, include: (i) RESTful ser-
vices rely on a small set of domain-independent operations (e.g., GET to re-
trieve a representation of resources and PUT to update resources), while in
SOAP-based services operations are defined in a domain-specific manner (e.g., a
procurement service may offer a createPurchaseOrder operation), and (ii) REST
works based on currently used Web standards such as HTTP and SSL. However,
SOAP-based approach proposes a suite of extensible specifications to enable ad-
vanced functionalities such as reliable messaging, message-level and federated
security and coordination, etc. RESTful services have been widely adopted for
offering a significant number of simple services over the Internet, and they have
gained remarkable popularity among developers. For instance, in Amazon Web
services, the usage of their RESTful services far exceeds using its SOAP-based
Web services although developers have to read textual description of RESFTful
services to understand how to develop clients to interact with them.

It should be noted that another key distinction between above approaches is
that WS-* and ebXML approaches are industry initiatives, while SWS is mainly
promoted by academia. REST architectural style is proposed in the academic
environment, but it has been favored by industry.

3.2 Analysis of SOA Approaches Using Integration Layers

Figure 3 compares the above four approaches of SOA realizations in various
integration layers. As it can be seen WS-* family of approaches, semantic Web
services, and ebXML target integration at the business logic level. On the other
hand, RESTful services mainly intend to simplify integration at the data layer,
and recently they have been also used for integration at the presentation layer [5].
There has been an extensive study on comparison of standardization efforts
in WS-* family, semantic Web services and ebXML (the reader is referred to
[12,24,18]). In the following, we only focus on emerging technologies in this area,

124 B. Benatallah and H.R. Motahari Nezhad

HTTP (SSL) HTTP, SMTP. FTP

SOAP

WS-Security, WS-Reliability, WS-Addressing,
SOAP Attachments

WSDL

Mashups (AJAX)

WS-Conversation

WSDL-S
OWL-S Profile,

OWL-S Grounding

WSCI

WSCDL

BPEL OWL-S
Service Model

WS-Policy

WS-SecurityPolicy
OWL-S Profile

ebMS

ebXML CPP

ebXML CPP

ebXML
BPSS, CPA

RESTful WS-* Semantic WS ebXML

HTTP

BTP, WS-Transaction

WS-Coordination

ebXML BPSS

C
om

m
un

ic
at

io
n

XML, HTML,
text, JSON, etc XML

XML
OWL

SDO

D
at

a

B
u s

in
es

s
Lo

gi
c

P
re

se
nt

at
io

n
P

ol
ic

ie
s

B
.P

.
In

tf.
C

oo
rd

.

S
C
A

Fig. 3. The comparison of SOA realization approaches in the context of proposed
integration layers

and in particular, data services, which are RESTful services and target the data
integration layer, service component architecture (SCA) for integration in the
business logic layer, and finally mashups for the integration at the presentation
layer.

3.2.1 Data Level Integration: Data Services and SDO
Over the last few years, there has been an enormous increase in the number of
distributed data sources, which are needed to be accessed over networks, and
more notably over the Internet. The concept of “service” in SOA has provided a
proper abstraction for wrapping and offering application over the Internet. This
abstraction has been adopted to expose data sources with different types over
the Internet. The term data services, coined by Microsoft4, is used to refer to
such services [4,1]. Data services provide solutions for integration at the data
layer. Data services can be used to provide virtual, aggregated views of data in
multiple data sources. Hence, a data service provides data mediation, integration
and also an abstraction for the underlying data sources. They simplify the data
access, integration and manipulation. Data services also can be used to expose
data integration systems as services.
4 Astoria project, http://astoria.mslivelabs.com

Service Oriented Architecture: Overview and Directions 125

To implement data services, REST architecture is adopted, due to its simplic-
ity, so that they can be accessed over HTTP and identified using a URI. The
data in a data service is represented using an abstract model, called entity data
model, which is an extended form of entity-relationship model. A data service
can be configured to return the data in several formats including XML, JSON5,
RDF+XML, text, etc. It supports HTTP GET method for accessing data and
HTTP methods such as PUT, POST or DELETE to manipulate data through
the data service.

Integration at the data layer is also needed in business logic layer integration
approaches. In such scenarios, data has to be exchanged between services and
non-services applications (e.g., Java programs) and other data sources. XML
has been adopted as the data format by WS-* family, which is intended for
integration at the business logic layer (see Figure 3). To facilitate data exchange
between both services and non-services and data sources using a single format a
generic data format called service data objects(SDO)6 is introduced. SDO offers
more than a data format. Indeed, it provides a data programming architecture
and a set of APIs for accessing and manipulation of data.

SDO architecture consists of three components: data objects, data graph, and
data access service. Data objects contain a set of named properties that contain
data elements or refer to another data objects. There are also data object APIs
to access and manipulate the data. Data graphs are in fact envelops for data
objects, which are transported between partner applications. Data graphs keep
the track of changes in data objects by partner applications. Data graphs can
be constructed from data sources, e.g., XML files, relational databases, EJBs,
and services, e.g., Web services, and adapters (implementing data mediation and
transformations). Finally, data access services are the software components that
populate data graphs from data sources and services, and manipulate the data
graph based on manipulation of data sources.

“Data access services” in SDO play a similar role to that of “data services”
above. However, SDO provide a more rich data representation, exchange and ma-
nipulation approach made for data integration over heterogeneous data sources
in an enterprise. SDO approach targets data integration with business logic level
integration solutions. SDO offers a programming platform for data integration,
and hence should be used by integration developers. However, data services tar-
get data integration for end users or non-expert users. SDO is currently widely
supported in the implementation tools, and its specification has been sent to
OASIS for standardization.

3.2.2 Business Logic Level Integration: SCA
Web services (WS-*) approach mainly targets integration at the business logic
level (see Figure 3). The standardization in Web services simplifies interopera-
tion at the business logic level from basic coordination layer to policies and non-
functional properties. However, besides standardization, realizing SOA

5 http://www.json.org
6 http://www.osoa.org/display/Main/Service+Data+Objects+Home

126 B. Benatallah and H.R. Motahari Nezhad

requires programming models, methodologies and tools to enable interoperation
and application integration. In addition, in an enterprise not only Web services,
but also existing functionalities that are not Web services have to be integrated
in building integrated applications. As the concept of service promotes reuse,
an important aspect is to provide a framework to support users in composing
services and other non-services functionalities, which can be exposed as services.

To fulfill the above requirements, a group of software vendors including BEA,
IBM, Oracle and SAP led an initiative represented by a set of specifications,
called service component architecture (SCA)7. The intention of SCA is to sim-
plify the creation and integration of business applications using SOA paradigm.
In this architecture, an application is seen as a set of components (services),
which implement (service) interfaces. It provides abstractions and methodolo-
gies for component construction, component composition (assembly) and deploy-
ment. The framework is intended to be neutral to component implementations
(it supports as component implementation languages such as Java, BPEL, PHP,
C++, .NET, etc). The principle that this architecture follows is to separate the
business logic implementation from the data exchange between components.

SCA offers a service assembly models that is a framework for the composition
of components into bigger ones, which can be deployed to the server together,
or into systems that can be deployed separately. An SCA component (simple or
composite) can be exposed as a service, and can consume other external service
components. The communication between components is modeled using wires.
SDO data representation format (see Section 3.2.1) is developed to be used for
transportation of data on wires between components in SCA. Currently, SCA
has been submitted for standardization to OASIS.

Comparing SCA with other standard specifications (e.g., in WS-* family of
standards), it is not intended to address integration from one specific aspect.
However, it provides an architecture, programming models and abstractions to
support development of large scale systems using SOA across different layers in
the business logic level (see Figure 3). It builds on and exploits the offerings of
SOA and in particular Web services, and take the idea of “software as service”
one step ahead by enabling to expose business logic functionalities (developed in
different programming languages) as services that can communicate, be reused
and composed with other services.

3.2.3 Presentation Level Integration: Mashups
The integration problem at the communication, data, and business logic level
has been extensively studied, as discussed in previous sections. However, little
work has been done to facilitate integration at the presentation level. Since
development of user interfaces (UI) is one of the most time-consuming parts of
application development, testing and maintenance, the reuse of UI components is
as important as reuse of business logic [5]. Recently, the concept of Web mashups
and related technologies have been introduced, which take the first step in this
direction.

7 http://www.osoa.org/display/Main/Service+Component+Architecture+Home

Service Oriented Architecture: Overview and Directions 127

Web mashups are Websites or Web applications that combines content and
presentations from more than one source into an integrated experience [17].
Mashups are developed by compositing data, business logic (APIs) and UI of
existing applications or services. The difference with traditional integration ap-
proaches is that Web mashups also integrate UI components. Nowadays, mashups
are implemented using AJAX (Asysnchronous Javascript + XML) [9], but it is
not necessary to be implemented using it. AJAX follows the REST architecture
and aim to allow client side browser based applications to provide a rich and
responsive interface at the same level of desktop applications. It enables to send
requests to Web servers and services and receive responses without blocking.

The common principle in mashups is to quickly compose an application from
existing (REST, Javascript, RSS/Atom, and SOAP) services. Mashup appli-
cations usually combine services for unexpected usages. The main feature of
mashup, from an integration point of view, is that they allow for integration
at the user interface (presentation) level. Mashup can be also considered as an
ad-hoc approach for composition of existing content and services for building
situational applications (typically short-lived, and just-in-time solutions), which
is to the interest of many end users. To support development of mashup applica-
tions, numerous tools and frameworks have emerged recently to assist developers
and end users. Examples of these tools and frameworks are Yahoo Pipes8, Google
Mashup Editor9, Microsoft Popfly10, and Intel Mash Maker11.

Recently, a broader term, i.e., Web 2.0 [20] has been introduced to refer to all
user-centric creation, access and sharing of information and presentation compo-
nents on the Web. Web 2.0 has transformed the way that end users are using the
Web. In Web 2.0, users collaborate and share information in new ways such as
social networking and wikis. Web 2.0 consists of a set of principles and practices
that makes the existing Web technologies more people centric. The common
principles of Web 2.0 include: (i) looking at the web as a platform that allows
extending the concept of service to any piece of data, software or application that
is exposed on the Web, (ii) using the collective intelligence (collaboration) to cre-
ate, share, compose and refine applications. This mandates offering lightweight
programming models, and rich user interface. AJAX and mashups aim to provide
such programming language models and user interfaces.

The composition and integration in the mashups are mainly based on data flow
(e.g., a series operations performed on the data flowing from one component to
another in Yahoo Pipes), and synchronization is based on events (e.g., in using
Javascripts and receiving response) rather than ordered invocation of services,
which is the main approach in business logic level integration (e.g., WS-* family). It
should be noted that the mashups are about simplicity, usability and ease of access,
and that unlike WS-* approach or data integration approaches (e.g., ETL)this sim-
plicity has the upper hand over completeness of features or full extensibility.

8 http://pipes.yahoo.com
9 http://editor.googlemashups.com

10 http://www.popfly.ms
11 http://mashmaker.intel.com

128 B. Benatallah and H.R. Motahari Nezhad

4 Conclusions and Future Directions

As reviewed in this chapter, available approaches for realization of SOA re-
markably simplify integration at the communication, data, and business logic
levels. This is achieved by proposing frameworks, abstractions and standardiza-
tion efforts that increase the opportunities for homogeneities and unification of
communication protocols and data format for data exchange. However, the in-
tegration at the end user (presentation) level has not yet received the required
attention.

We believe the end users are the focus of next wave of research and devel-
opment work in the various approaches in SOA both in RESTful services and
mashups, and also in WS-* family of specifications. As also can be seen in Fig-
ure 3, the presentation level integration for the RESTful services does not still
provide a full-fledged approach for integration, and there is no counterpart efforts
in WS-* approaches. One possible future direction could be also to adopt the
“service” concept as an abstraction for integration at the presentation level, so
that presentation components (and GUIs) are offered with published interfaces
that can be easily integrated and composed. Examples of initiative in this direc-
tions is Google Map APIs 12. However, further end user level support is needed
as currently, such practices involves lots of low level scripting and coding, which
may not be convenient for end users.

The end-user driven trend in integration has also been witnessed by intro-
duction of new concepts such as process of me by Gartner [10], and Internet
service bus [7]. Gartner report states that we should redefine processes in an
enterprise, and put the focus on people so that individuals have understand-
ing and control of processes that they are involved in them. The process of
me includes integration of end user tools such as instant messaging, spread-
sheets, threaded discussions and management of real-time events with business
process applications, and other Internet technologies based on Web 2.0. There-
fore, a major enabler step for approaches that offer business logic integration
approaches (e.g., WS-* family) to fill this gap, and to support individuals (em-
ployees) by integration of ad-hoc personal and collaboration tools with processes
supported by traditional business applications. Realizing the concept of process
of me requires framework and tool support to allow users to define their own
views of the process execution in the enterprise with preferred end users-oriented
tools.

With a similar spirit, Internet service bus proposal takes the end user in-
volvement to the next level by promoting the ideas of creating end user Web
applications on the Web and using the Web as an execution platform for end
user applications and other software and services. This idea can be seen as tak-
ing what SCA (and in general enterprise service bus) provides for professional
integration developers in composition of services and application and offering
them for end users. In such an environment end users should be supported in
the process of finding existing services and integrating them.

12 code.google.com/apis/maps

Service Oriented Architecture: Overview and Directions 129

It should be noted that while SOA, and the abstraction of “service” simplifies
significantly the integration at various level, there is still the need for bridges,
mediators, adapters and mismatch resolution frameworks (e.g., data mediators,
business protocol adapters, and policies resolution frameworks). In fact, SOA,
and in particular standardization in SOA, reduces the opportunities of hetero-
geneities. However, at the higher levels of abstractions (e.g., business-level inter-
faces, business protocols, and policies), WS-* family offers languages to define
the service interface, business protocol and policies. There have been consider-
able research and development efforts in identifying and classifying mismatches
between such service specifications, and their resolution (e.g., see [19,6,25]). How-
ever, these approaches still involve many manual steps by the developers. Spe-
cially, there is a need for automated approaches for (simple) data mediation
between various formats at the end user side, when building mashup applica-
tions, and in spreadsheet environments, which are most popular tools for data
integration and manipulation.

Acknowledgement

Authors would like to thank the anonymous reviewers for their valuable feed-
backs on the earlier draft of the chapter.

References

1. Adya, A., et al.: Anatomy of the ADO.NET entity framework. In: SIGMOD (2007)
2. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Ar-

chitectures and Applications. Springer, Heidelberg (2004)
3. Bussler, C., Fensel, D., Maedche, A.: A conceptual architecture for semantic web

enabled web services. SIGMOD Rec 31(4), 24–29 (2002)
4. Carey, M.: Data delivery in a service-oriented world: the bea aqualogic data services

platform. In: SIGMOD (2006)
5. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Un-

derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

6. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation
for service interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

7. Ferguson, D.F., Pilarinos, D., Shewchuk, J. (eds.): The Internet Service Bus. Mi-
crosft (May 2006),
http://msdn2.microsoft.com/en-us/library/bb906065.aspx

8. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine, USA (2000)

9. Garrett, J.J. (ed.): Ajax: A New Approach to Web Applications (February 2005),
http://www.adaptivepath.com/ideas/essays/archives/000385.php

10. Genovese, Y., Comport, J., Hayward, S. (eds.): Person-to-Process Interaction
Emerges as the ’Process of Me’, Gartner (May 2006), http://www.gartner.com/
DisplayDocument?ref=g search&id=492389

http://msdn2.microsoft.com/en-us/library/bb906065.aspx
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.gartner.com/DisplayDocument?ref=g_search&id=492389
http://www.gartner.com/DisplayDocument?ref=g_search&id=492389

130 B. Benatallah and H.R. Motahari Nezhad

11. Halevy, A.Y. et al.: Enterprise information integration: successes, challenges and
controversies. In: SIGMOD Conference, pp. 778–787 (2005)

12. Kim, D.J., Agrawal, M., Jayaraman, B., Rao, H.R.: A comparison of b2b e-service
solutions. Commun. ACM 46(12), 317–324 (2003)

13. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246
(2002)

14. Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J.A., Sheth, A.P.: Designing
semantic web processes: The WSDL-S approach. In: Semantic Web Services, Pro-
cesses and Applications, pp. 161–193. Springer, Heidelberg (2006)

15. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., et al.: Bringing semantics to
web services: The OWL-S approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC
2004, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)

16. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.:
Business-to-business interactions: issues and enabling technologies. The VLDB
J. 12(1), 59–85 (2003)

17. Merrill, D. (ed.): Mashups: The new breed of Web app. (April 2006),
http://www.ibm.com/developerworks/library/x-mashups.html

18. Nezhad, H.R.M., Benatallah, B., Casati, F., Toumani, F.: Web services interoper-
ability specifications. IEEE Internet Computing 39(5), 24–32 (2006)

19. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proc. of WWW 2007, pp. 993–
1002 (2007)

20. O’Reilly, T. (ed.): What Is Web 2.0: Design Patterns and Business Models for
the Next Generation of Software (September 2005), http://www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

21. Papazoglou, M.P., van den Heuvel, W.-J.: Service oriented architectures: ap-
proaches, technologies and research issues. VLDB J 16(3), 389–415 (2007)

22. Polleres, A., Lara, R. (eds.): A Conceptual Comparison between WSMO and OWL-
S (2005),
www.wsmo.org/2004/d4/d4.1/v0.1/

23. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

24. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. IEEE Com-
puter 36(10), 38–44 (2003)

25. Wohlstadter, E., Tai, S., Mikalsen, T., Rouvellou, I., Devanbu, P.: Glueqos: Mid-
dleware to sweeten quality-of-service policy interactions. In: Proc. of ICSE 2004,
pp. 189–199 (2004)

26. Ziegler, P., Dittrich, K.R.: Three decades of data integration - all problems solved.
In: IFIP Congress Topical Sessions, pp. 3–12 (2004)

http://www.ibm.com/developerworks/library/x-mashups.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
www.wsmo.org/2004/d4/d4.1/v0.1/

A Guided Tour through SAVVY-WS:
A Methodology for Specifying and Validating

Web Service Compositions

Domenico Bianculli1, Carlo Ghezzi2, Paola Spoletini3,
Luciano Baresi2, and Sam Guinea2

1 University of Lugano
Faculty of Informatics

via G. Buffi 13, CH-6900, Lugano, Switzerland
domenico.bianculli@lu.unisi.ch

2 Politecnico di Milano
DEEP-SE Group - Dipartimento di Elettronica e Informazione

piazza L. da Vinci, I-20133, Milano, Italy
{carlo.ghezzi,sam.guinea,luciano.baresi}@polimi.it

3 Università dell’Insubria
Dipartimento di Scienze della Cultura, Politiche e dell’Informazione

via Carloni 78, I-22100, Como, Italy
paola.spoletini@uninsubria.it

Abstract. Service-Oriented Architectures are emerging as a promising
solution to the problem of developing distributed and evolvable applica-
tions that live in an open world. We contend that developing these ap-
plications not only requires adopting a new architectural style, but more
generally requires re-thinking the whole life-cycle of an application, from
development time through deployment to run time. In particular, the
traditional boundary between development time and run time is blur-
ring. Validation, which traditionally pertains to development time, must
now extend to run time. In this paper, we provide a tutorial introduction
to SAVVY-WS, a methodology that aims at providing a novel integrated
approach for design-time and run-time validation. SAVVY-WS has been
developed in the context of Web service-based applications, composed
via the BPEL workflow language.

1 Introduction

Software systems have been evolving from having static, closed, and centralized
architectures to dynamically evolving distributed and decentralized architectures
where components and their connections may change dynamically [1]. In these
architectures, services represent software components that provide specific func-
tionality, exposed for possible use by many clients. Clients can dynamically dis-
cover services and access them through network infrastructures. As opposed to
the conventional components in a component-based system, services are devel-
oped, deployed, and run by independent parties. Furthermore, additional services

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 131–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 D. Bianculli et al.

can be offered by service aggregators composing third-party services to provide
new added-value services.

This emerging scenario is open, because new services can appear and disap-
pear, dynamic, because compositions may change dynamically, and decentralized,
because no single authority coordinates all developments and their evolution.

Service-Oriented Architectures (SOAs) have been proposed to support appli-
cation development for these new settings. An active research community is in-
vestigating the various aspects for service-oriented computing; research progress
is documented, for example, by the International Conference on Service-Oriented
Computing [2]. Several large research projects have also been funded in this area
by the European Union, such as, amongst many others, SeCSE [3], PLASTIC
[4], and the S-Cube [5] network of excellence, in which the authors are involved.
The European Union has also promoted many initiatives to foster services-based
software development and research, such as NESSI [6].

We strongly believe that a holistic approach is necessary to develop modern
dynamic service-based applications. A coherent and well-grounded methodol-
ogy must guide an application’s life cycle: from development time to run time.
SAVVY-WS (Service Analysis, Verification, and Validation methodologY for
Web Services) is intended to be a first attempt to contribute to such a method-
ology, by focusing on lifelong verification of service compositions, which encom-
passes both design-time and run-time verification. SAVVY-WS is tailored to Web
service technologies [7,8]. The reason of this choice is that although SOAs are
in principle technology-agnostic and can be realized with different technologies
—such as OSGi, Jini and message-oriented middleware— Web services are the
most used technology to implement SOAs, as corroborated by the many on-going
standardization efforts devoted to support them. SAVVY-WS has been distilled
by research performed in the context of several projects, most notably the EU
IST SeCSE [3,9] and PLASTIC [4] projects, and the Italian Ministry of Research
projects ART DECO [10] and DISCoRSO [11]. A preliminary evaluation of the
use of SAVVY-WS has been reported in [12,13,14]. SAVVY-WS is supported by
several prototype tools that are currently being integrated in a comprehensive
design and execution environment.

This paper provides a tutorial introduction to SAVVY-WS. Section 2 briefly
summarizes the main features of the BPEL language, which is used for service
compositions, and the ALBERT language, which is used to formally specify prop-
erties. Section 3 gives an overview of SAVVY-WS, which is based on ALBERT,
a design-time verification environment based on model checking, and a run-time
monitoring environment. Section 4 introduces two running examples that will
be used throughout the rest of the paper. Section 5 discusses how ALBERT
can be used as a specification language for BPEL processes. Section 6 shows
how verification is performed at design time via model checking, while Sect. 7
shows how continuous verification of the service composition can be achieved
at run time. Section 8 discusses the related work. Section 9 provides some final
conclusions.

A Guided Tour through SAVVY-WS 133

2 Background Material

2.1 BPEL

BPEL —Business Process Execution Language (for Web Services)— is a high-
level XML-based language for the definition and execution of business processes
[15]. It supports the definition of workflows that provide new services, by com-
posing external Web services in an orchestrated manner. The definition of a
workflow contains a set of global variables and the workflow logic is expressed
as a composition of activities ; variables and activities can be defined at different
visibility levels within the process using the scope construct.

Activities include primitives for communicating with other services (receive,
invoke, reply), for executing assignments (assign) to variables, for signaling faults
(throw), for pausing (wait), and for stopping the execution of a process (termi-
nate). Moreover, conventional constructs like sequence, while, and switch provide
standard control structures to order activities and to define loops and branches.
The pick construct makes the process wait for the arrival of one of several possi-
ble incoming messages or for the occurrence of a time-out, after which it executes
the activities associated with the event.

The language also supports the concurrent execution of activities by means
of the flow construct. Synchronization among the activities of a flow may be
expressed using the link construct; a link can have a guard, which is called
transitionCondition. Since an activity can be the target of more than one link,
it may define a joinCondition for evaluating the transitionCondition of each
incoming link. By default, if the joinCondition of an activity evaluates to false,
a fault is generated. Alternatively, BPEL supports Dead Path Elimination, to
propagate a false condition rather than a fault over a path, thus disabling the
activities along that path.

Each scope (including the top-level one) may contain the definition of the
following handlers:

– An event handler reacts to an event by executing —concurrently with the
main activity of the scope— the activity specified in its body. In BPEL there
are two types of events: message events, associated with incoming messages,
and alarms based on a timer.

– A fault handler catches faults in the local scope. If a suitable fault handler
is not defined, the fault is propagated to the enclosing scope.

– A compensation handler restores the effects of a previously completed trans-
action. The compensation handler for a scope is invoked by using the com-
pensate activity, from a fault handler or compensation handler associated
with the parent scope.

The graphical notation for BPEL activities used in the rest of the paper is
shown in Fig. 1; it has been devised by the authors and it is freely inspired by
BPMN [16].

134 D. Bianculli et al.

Activity Shape Activity Shape Activity Shape

receive wait pick

invoke terminate flow

reply sequence fault handler
!

assign switch event handler

throw

!

while compensation handler

Fig. 1. Graphical notation for BPEL

2.2 ALBERT

ALBERT [12] is an assertion language for BPEL processes, designed to support
both design-time and run-time validation.

ALBERT formulae predicate over internal and external variables. The former
consist of data pertaining to the internal state of the BPEL process in execution.
The latter are data that are considered necessary to the verification, but are not
part of the process’ business logic and must be obtained by querying external
data sources (e.g., by invoking other Web services, or by accessing some global,
persistent data representing historical information).

ALBERT is defined by the following syntax:

φ ::= χ | ¬φ | φ ∧ φ | (op id in var ; φ) |
Becomes(χ) | Until(φ,φ) | Between(φ,φ,K) | Within(φ,K)
χ ::= ψ relop ψ | ¬χ | χ ∧ χ | onEvent(µ)
ψ ::= var | ψ arop ψ | const | past(ψ, onEvent(µ), n) |
count(χ, K) | count(χ, onEvent(µ), K) | fun(ψ, K) |
fun(ψ, onEvent(µ), K) | elapsed(onEvent(µ))
op ::= forall | exists
relop ::= < | ≤ | = | ≥ | >
arop ::= + | − | × | ÷
fun ::= sum | avg | min | max

where id is an identifier, var is an internal or external variable, onEvent is an
event predicate, Becomes , Until , Between and Within are temporal predicates,
count , elapsed , past , and all the functions derivable from the non-terminal fun
are temporal functions of the language. Parameter µ identifies an event: the start

A Guided Tour through SAVVY-WS 135

or the end of an invoke or receive activity, the receipt of a message by a pick or
an event handler, or the execution of any other BPEL activity. K is a positive
real number, n is a natural number and const is a constant.

The above syntax only defines the language’s core constructs. The usual logical
derivations are used to define other connectives and temporal operators (e.g., ∨,
Always , Eventually , . . .). Moreover, the strings derived from the non-terminal
φ are called formulae; the strings derived from the non-terminal ψ are called
expressions.

The formal semantics of ALBERT is provided in Appendix A.

3 A Bird-Eye View of SAVVY-WS

This section illustrates the principles and the main design choices of SAVVY-
WS. Its use is then illustrated in depth in the rest of this paper, which shows
SAVVY-WS in action through two case studies.

SAVVY-WS’s goal is to support the designers of composite services during
the validation phase, which extends from design time to run time. SAVVY-WS
assumes that service composition is achieved by means of the BPEL workflow
language, which orchestrates the execution of external Web services.

Figure 2 summarizes the use of SAVVY-WS within the development process
of BPEL service compositions. When a service composition is designed (step 1),
SAVVY-WS assumes that the external services orchestrated by the workflow are
only known through their specifications. The actual services that will be invoked
at run time, and hence their implementation, may not be known at design time.
The specification describes not only the syntactic contract of the service (i.e.,
the operations provided by the service, and the type of their input and output
parameters), but also their expected effects, which include both functional and
non-functional properties. Functional properties describe the behavioral contract
of the service; non-functional properties describe its expected quality, such as its
response time.

Specifying functional and non-functional properties only at the level of inter-
faces is required to support lifelong validation of dynamically evolvable compo-
sitions, which massively use late-binding mechanisms. Indeed, at design time a
service refers to externally invoked services through their required interface. At
run time, the service will resolve its bindings with external services that provide
a matching interface, i.e., their provided interface conforms to the one used at
design time.

The SAVVY-WS methodology supports the ALBERT language to specify re-
quired service interfaces. The language specifies the required interface in terms
of logical formulae, called assumed assertions (AAs). Based on the AAs of all
services invoked by the workflow, in turn, the composition may offer a service
whose properties can also be specified via ALBERT formulae, called guaranteed
assertions (GAs). Therefore, the second step of the SAVVY-WS-aware devel-
opment process is to annotate the BPEL process with assumed and guaranteed
assertions written in ALBERT (step 2 in Fig. 2).

136 D. Bianculli et al.

ALBERT
assumed

assertions

ALBERT
guaranteed
assertions

BPEL
process

bpel PR

BPEL
process

+

BPEL process +
assumed and

guaranteed assertions

BPEL2BIR
+

Bogor

YES

service 1

service ...

service n

 BPEL process design1 Annotation of the BPEL process with ALBERT assertions

Design-time validation

NO

Deployment

BPEL
process

+
ALBERT

assertions

Run-time
monitoring
architecture

Run-time validation
service 1

service ...

service n
BPEL engine + Dynamo

2

34

5

Fig. 2. SAVVY-WS-aware development process

The SAVVY-WS methodology is supported at design time by a formal verifi-
cation tool (Bpel2Bir) that is used to check (step 3 in Fig. 2) that a composite
service delivers its expected functionality and meets the required quality of ser-
vice (both specified in ALBERT as GAs), under the assumption that the external
services used in the composition fulfill their required interfaces (specified in AL-
BERT as AAs). The SAVVY-WS verification tool is based on the Bogor model
checker [17].

Design-time verification does not prevent errors from occurring at run time.
In fact, there is no guarantee that a service implementation eventually fulfills the
contract promised through its provided interface. The service provider may either
be malicious, by offering a service with an inferior experienced quality of service
and/or a wrong functionality to increase its revenue on the service provision, or
it might change the service implementation as part of its standard maintenance
process: in this case, a service that worked properly might be changed in a new
version that violates its previous contract.

A Guided Tour through SAVVY-WS 137

Furthermore, during design-time verification, it is not possible to model the
behavior of the underlying distributed infrastructure, which plays an important
role in the provision of networked services. Although service providers’ spec-
ifications could take into account, to some extent, the role of the distributed
infrastructure, it is virtually impossible to foresee all possible conditions of the
infrastructure components (e.g., network links) at design time.

To solve these problems, SAVVY-WS supports continuous verification by
transforming —when a BPEL process is deployed on a BPEL execution en-
gine (step 4 in Fig. 2)— ALBERT formulae into run-time assertions that are
monitored (step 5 in Fig. 2) by Dynamo —our monitoring framework embed-
ded within the BPEL engine— to check for possible deviations from the correct
behavior verified at design time. If a deviation is caught, suitable compensation
policies and recovery actions should be activated.

4 Running Examples

In this section, we describe the two running examples used in the rest of this
paper to illustrate our lifelong validation methodology.

The first example is inspired by one of the scenarios developed in the context
of the EU IST project SENSORIA [18]. We considered the On Road Assistance
scenario, which takes place in an automotive domain, where a SOA interconnects
(the devices running on) a car, service centers providing facilities like car repair,
towing and car rental, and other actors. As will be described in Sect. 5.1, this
example is used to show how to express (and validate) in ALBERT properties
related to the timeliness of events.

The second example is inspired by a similar one described in [19,20] and it il-
lustrates a BPEL process realizing a Car Rental Agency service. It interacts with
a Car Broker Service, which controls the operations of the branch; with a User
Interaction Service, through which customers can make car rental requests; with
a Car Information Service, which maintains a database of cars availability and
allocates cars to customers; with a Car Parking Sensor Service, which exposes
as a Web service the sensor that senses cars as they are driven in or out of the
car parking of the branch. As will be illustrated in Sect. 5.2, this example will
be used to show how to express ALBERT properties about sequences of events.

4.1 Example 1: On Road Assistance

The On Road Assistance process (depicted in Fig. 3), is supposed to run on an
embedded module in the car and is executed after a breakdown, when the car
becomes not driveable.

The Diagnostic System sends a message with diagnostic data and the driver’s
profile (which contains credit card data, the allowed amount for a security deposit
payment, and preferences for selecting assistance services) to the workflow, which
starts by executing the startAssistance receive activity. Then, it starts a flow
(named flow1) containing two parallel sequences of activities.

138 D. Bianculli et al.

startAssistance

requestCardCharge

selectServices

requestCCCallBack

Diagnostic system

Bank

GPS

Registry

Reasoner

orderGarage

Garage

Tow Truck
Dispatching Center

Car Rental Agency

assignPLs

orderRentalCar

requestLocation

findLocalServices

towTruck
ProgressNotice

orderTowTruck

Fig. 3. The On Road Assistance BPEL process

A Guided Tour through SAVVY-WS 139

In one sequence, the process first requests the Bank service to charge the
driver’s credit card with a security deposit payment, by invoking the operation
requestCardCharge and passing the credit card data and the amount of the
payment. Then, it waits for the asynchronous reply of the Bank, modeled by the
requestCCCallBack receive activity.

In the other parallel sequence, the process first asks the GPS service —which
represents a Web service interface for the GPS device installed on the car— to
provide the position of the car (requestLocation invoke activity). The returned
location is then used to query (findLocalServices invoke activity) a Registry
to discover appropriate services close to the area where the car pulled out. The
Registry service will return a sequence of triples —each of which contains a
suitable combination of locally available services providing car repair shops, car
rental, and tow trucking— stored in the foundServices process variable.

Subsequently, this variable is used as an input parameter in the selectServ-
ices operation of the Reasoner service, which is supposed to select the best
available service triple matching the driver’s preferences, and to store the se-
lected services’ endpoint references in the bestServices process variable. After
assigning (assignPLs assign activity) the endpoint references to partner links
corresponding to the Garage, Car Rental Agency and Tow Truck Dispatching
Center services, the process first sets an appointment with the garage, by send-
ing to it the car diagnostic data (orderGarage invoke activity). The garage
acknowledges the appointment by sending back the actual location of the repair
shop.

Afterwards, the process starts a flow (named flow2) with three activities.
Two activities are grouped in a sequence, where the process first contacts the
towing service dispatching center (orderTowTruck invoke activity), and then
it waits for an acknowledgment message ack confirming that a tow truck is in
proximity of the car; this message is consumed by the towTruckProgressNotice
receive activity.

The other activity is executed in parallel to the sequence mentioned above, and
is used to contact the car rental agency (orderRentalCar invoke activity). In
both invoke activities of flow2, the garage location is sent as an input parameter,
representing the coordinates where the car is to be towed to and where the rental
car is to be delivered.

To keep the example simple, we assume that at least one service triple is
retrieved after invoking the Registry, and that the selected garage, towing service,
and car rental agency can cope with the received requests.

4.2 Example 2: Car Rental Agency

The Car Rental Agency process (sketched in Fig. 4) is supposed to run on the
information system of a local branch of a car rental company.

The process starts as soon as it receives a message from the Car Broker Service
(startRental receive activity). Then, the process enters an infinite loop: every

140 D. Bianculli et al.

Fig. 4. Car Rental Agency BPEL process

iteration is a pick activity that suspends the execution and waits for one of the
following four messages:

– findCar. A customer asks to rent a car and provides her preferences (e.g., the
car model). Then, the process checks the availability of a car that matches
customer’s preferences by invoking the lookupCar operation on the Car
Information Service. The result of this operation, which can be either a
negative answer or an identifier corresponding to the digital key to access
the car, is returned to the customer with the findCarCB reply activity.

– carEnterX and carExitX. These two messages are sent out by the Car Park-
ing Sensor Service when a car enters (respectively, exits) the car parking.
The process reacts to this information by updating the cars database, invok-
ing, respectively, the markCarAvailableX and markCarUnavailableX oper-
ations on the Car Information Service. Actually, the X in the name of each
message or operation is a placeholder for a unique id associated with a car;
therefore, if A is a car id, the actual messages associated with it have the
form carEnterA and carExitA, and the corresponding operations are named
markCarAvailableA and markCarUnAvailableA.

– stopRental.The Car Broker Service stops the operations of the local branch,
making the process terminate.

To keep the example simple, we assume that the local branch where the Car
Rental Agency process is run is the only one accessing the Car Information
Service and that cars in the car parking can be only rented through the local
car rental branch.

A Guided Tour through SAVVY-WS 141

5 Specifying Services with ALBERT

The ALBERT language defines formulae that specify invariant assertions for a
BPEL process. Two kinds of assertions can be specified using ALBERT:

– assumed assertions (AAs), which define the properties that partner services
are required to fulfill when interacting with the BPEL process;

– guaranteed assertions (GAs), which define the properties that the composite
service should satisfy, assuming that external services operate as specified.

Both kinds of assertions allow for stating functional and non-functional prop-
erties of services. As an example, an AA that should hold after the execution
(as a post-condition) of an invoke activity Act on an external service S can be
written in the following form:

onEvent(end Act) → $myVar=EDS::getData()/var

The antecedent of the formula contains the onEvent predicate, which is used to
identify a specific point in the execution of the workflow. This point is represented
by its argument: in this case, the keyword end denotes the point right after the
end of the execution of activity Act. The consequent of the formula states that
the value of the internal variable myVar of the process (the variable returned
after invoking service S) must be equal to the value obtained by accessing an
external data source (the EDS Web service endpoint), invoking the getData
operation on it and retrieving the var part from the return message.

It is also possible to express non-functional AAs, such as latency in a service
response. The following ALBERT formula specifies that the duration of an invoke
activity Act should not exceed 5 time units:

onEvent(start Act) → Within(onEvent(end Act), 5)

As in the previous formula, the antecedent identifies a certain point in the ex-
ecution of the process where the consequent should then hold to make the as-
sertion evaluate to true. This point is represented by the event corresponding
to the start of activity Act. The consequent contains the Within operator,
which evaluates to true if its first argument evaluates to true within the tem-
poral bound expressed by the second argument; otherwise it evaluates to false.
In other words, the consequent states that the event corresponding to the end
of activity Act should occur within 5 time units from the current instant, which
is the time instant in which the antecedent of the formula is true. We leave the
choice of the most suitable timing granularity to the verification engineer, who
can then properly convert the informal system requirements to formal, real-time
specifications [21].

ALBERT can also be used to express GAs. For example, one may state an
upper bound to the duration of a certain sequence of activities, which includes
external service invocations, performed by a composite BPEL workflow in re-
sponse to a user’s input request.

142 D. Bianculli et al.

As said above, ALBERT can be used to specify both AAs and GAs for BPEL
processes. However, when defining AAs, formulae should only refer to the BPEL
activities that are responsible for interacting with external services. Typically,
AAs express properties that must hold after the workflow has completed an in-
teraction with an external service. Hereafter we list a few specification templates
which proved to be useful to express AAs in practical cases. In the templates, µ
is an event identifying the start or the end of an invoke or receive activity, the
reception of a message by a pick, or an event handler ; φ and χ are ALBERT
formulae; ψ and ψ′ are ALBERT expressions; n is a natural number which is
used to retrieve a certain value upon the nth-last occurrence of event µ in the
past; K is a positive real number denoting time distances; fun is a placeholder
for any function (e.g., average, sum, minimum, maximum) that can be applied
to sets of numerical values.

– onEvent(µ) → φ: it allows for checking property φ only in the states preced-
ing or following an interaction with an external service;

– past(ψ′, onEvent(µ), n) = ψ → φ: it allows for checking property φ on the
basis of past interactions of the workflow with the external world;

– Becomes(count(χ, onEvent(µ), K) = ψ) → φ: it allows for checking prop-
erty φ only if past interactions with the external world have led to a certain
number of specific events;

– Becomes(fun(ψ′, onEvent(µ), K) = ψ) → φ: it allows for checking property
φ only if past interactions with the external world have led to a certain value
of an aggregate function.

5.1 Specifying the On Road Assistance Process

Hereafter we provide some properties of the On Road Assistance process: each
property is first stated informally and then in ALBERT, followed by an addi-
tional clarifying comment, when necessary.

– BankResponseTime
After requesting to charge the credit card, the Bank will reply within 4
minutes when a low-cost communication channel is used, and it will reply
within 2 minutes if a high-cost communication channel is used. In ALBERT
this AA can be expressed as follows:

onEvent(end requestCardCharge) →
(VCG::getConnection()/cost=‘low’∧
Within(onEvent(start requestCCCallBack), 4) ∨
(VCG::getConnection()/cost=‘high’∧
Within(onEvent(start requestCCCallBack), 2))

where VCG is the Web service interface for the local vehicle communication
gateway, providing contextual information on the communications channels
currently in use within the car. VCG::getConnection()/cost represents an

A Guided Tour through SAVVY-WS 143

external variable retrieved by invoking the getConnection operation on the
VCG service and accessing the cost part of the returned message.

– AllButBankServicesResponseTime
The interactions with all external services but the Bank, namely GPS, Reg-
istry, Reasoner, Garage, Tow Truck Dispatching Center and Car Rental
Agency will last at most 2 minutes. This AA is expressed as a conjunction
of formulae, each of which follows the pattern:

onEvent(start Act) → Within(onEvent(end Act), 2)

where Act ranges over the names of the invoke activities interacting with
the external services listed above.

– AvailableServicesDistance
The Registry will return services whose distance from the place where the
car pulled out is less than 50 miles. This AA can be expressed as follows:

onEvent(end findLocalServices) →
(forall t in $foundServices/[*] ;

(forall s in $foundServices/t/[*] ;

s/distance < 50))

where foundServices contains a sequence of triples, where elements contain
a distance message part.

– TowTruckServiceTimeliness
The Tow Truck Dispatching Center service selected by the Reasoner will
provide assistance within 50 minutes from the service request. This AA can
be expressed as follows:

onEvent(end selectServices) → ($bestServices/towing/ETA≤ 50)

where the ETA message part represents the maximum time bound guaranteed
by a service to provide assistance.

– TowTruckArrival
The time interval between the end of the order of a tow truck and the arrival
of the ack message (notifying that the tow truck is in proximity of the car)
is bounded by the ETA of the Tow Truck Dispatching Center service, that
is 50 minutes. This AA can be expressed as follows:

onEvent(end OrderTowTruck) →
Within(onEvent(start TowTruckProgressNotice), 50)

– AssistanceTimeliness
The tow truck that will be requested will be in proximity of the car within
60 minutes after the credit card is charged. This property must be guar-
anteed to the user by the On Road Assistance process. It is a GA, whose
validity is (rather trivially) assured at design time by the AllButBankSer-
vicesResponseTime, the TowTruckServiceTimeliness and the TowTruckArrival

144 D. Bianculli et al.

AAs, and by the structure of the process. The property can be expressed as
follows:

onEvent(end requestCCCallBack) →
Within(onEvent(start TowTruckProgressNotice), 60)

5.2 Specifying the Car Rental Agency Process

Hereafter we provide some properties of the Car Rental Agency process. As we
did in the previous section, each property is first stated informally and then in
ALBERT, followed by an additional clarifying comment, when necessary.

– ParkingInOut
Between two events signaling that a car exits the car parking, an event sig-
naling the entrance for the same car must occur. This AA can be expressed1

as a conjunction of formulae, each of which follows the pattern:

onEvent(carExitX) → Until(¬onEvent(carExitX), onEvent(carEnterX))

where X ranges over the identifiers of the cars available in the local rental
branch. Moreover, this formula can be combined, using a logical AND, with
a similar constraint that refers to the carEnterX message.

– CISUpdate
If a car is marked as available in the Car Information Service, and the same
car is not marked as unavailable until a lookupCar operation for that car is
invoked, then the lookupCar operation should not return a negative answer.
This AA on the behavior of the Car Information Service can be expressed2

as a conjunction of formulae, each of which follows the pattern:

(onEvent(end markAvailableX) ∧
Until(¬ onEvent(end markUnavailableX),

onEvent(start lookupCar) ∧ $carInfo/id=X))
→ Eventually(onEvent(start lookupCar) ∧ $carInfo/id=X ∧

Eventually((onEvent(end lookupCar) ∧ $queryResult/res!="no")))

where X ranges over the identifiers of the cars available in the local rental
branch, carInfo is the input variable of the lookupCar operation, whose
output variable is queryResult.

– RentCar
If a car enters in the car parking, and the same car does not exit until
a customer requests it for renting, then this request should not return a
negative answer. This is a GA, whose validity is (rather trivially) assured at
design time by the ParkingInOut and CISUpdate AAs, and by the structure

1 The semantics of the Until operator described in Appendix A guarantees that its
first argument will not be evaluated in the current state.

2 A more complete specification should also include that two lookupCar operations
for the same car could not happen at the same time. However, this is guaranteed by
the structure of the workflow.

A Guided Tour through SAVVY-WS 145

of the process. The property can be expressed as a conjunction of formulae,
each of which follows the pattern:

(onEvent(carEnterX) ∧
Until(¬ onEvent(carExitX),

onEvent(start findCar) ∧ $carInfo/id=X))
→ Eventually(onEvent(start findCar) ∧ $carInfo/id=X ∧

Eventually((onEvent(start findCarCB) ∧ $queryResult/res!="no")))

where X ranges over the identifiers of the cars available in the local rental
branch, carInfo is the input variable of the findCar message, queryResult
is the variable returned to the User Interaction Service by the findCarCB
reply activity.

6 Design-Time Verification

Our design-time verification phase is based on model checking. We developed
Bpel2Bir, a tool that translates a BPEL process and its ALBERT properties
into a model suitable for the verification with the Bogor model checker [17]. In
the rest of this section, we illustrate, with the help of some code snippets, how
the two running examples and their ALBERT properties are translated into BIR
(Bogor’s input language).

6.1 Example 1: Model Checking the On Road Assistance Process

A BPEL process is mapped onto a BIR system composed of threads that model
the main control flow of the process and its flow activities.

Data types are defined by using an intuitive mapping between WSDL mes-
sages/XML Schema types and BIR primitive/record types. In this mapping,
XML schema simple types (e.g., xsd:int, xsd:boolean) correspond to their
equivalent ones in BIR (e.g., int and boolean). Moreover, the mapping also sup-
ports some XML schema facets, such as restrictions on values over integer do-
mains (e.g., minInclusive) and enumeration, which is translated into an enu-
meration type. For example, the message that is sent by the Diagnostic System
to the process, contains diagnostic data and the driver’s profile (which includes
credit card data, the allowed amount for the security deposit payment and pref-
erences for selecting assistance services). This complex type can be modeled as
follows, using a combination of record types in BIR:

enum TDiagnost icData {dd1 , dd2}
enum TCustomerPre fe rence {cp1 , cp2}
enum TCred i tCard { cc c1 , c c c2 }

record TStartMsg {
TDiagnost icData d iagData ;
TCred i tCard ccData ;

146 D. Bianculli et al.

i n t (1 ,10) d e p o s i t ;
TCustomerPre fe rence cpData ;

}

where we assume, based on the WSDL specification associated with the BPEL
process, that the amount for the security deposit payment is an integer value
between 1 and 10 and that dd1, dd2, cp1, cp2, cc c1 and cc c2 are enumeration
values.

The input variables of receive activities and the output variables of invoke activ-
ities, whose values result from interactions with external services, can be modeled
using non-deterministic assignments. For example, the startAssistance receive
activity can be modeled as follows:

TStartMsg s t a r tMsg ;
// o t h e r code
s t a r tMsg := new TStartMsg ;
choose

when <true> do s t a r tMsg . d iagData := TDiagnost icData . dd1 ;
when <true> do s t a r tMsg . d iagData := TDiagnost icData . dd2 ;

end
// same pa t t e r n f o r g e n e r a t i n g c r e d i t ca rd data
// and customer ’ s p r e f e r e n c e s
choose

when <true> do s t a r tMsg . d e p o s i t :=1;
when <true> do s t a r tMsg . d e p o s i t :=2;

. . .
when <true> do s t a r tMsg . d e p o s i t :=9;
when <true> do s t a r tMsg . d e p o s i t :=10;

end

Activities nested within a flow are translated into separated threads. In our
example (see Fig. 3), flow1 contains two sequence activities; flow2 contains
a sequence and an invoke activity. For each of these activities, we declare a
corresponding global tid (thread id) variable:

t i d f l ow1 s e q u e n c e 1 t i d ;
t i d f l ow1 s e q u e n c e 2 t i d ;
t i d f l ow2 s e q u e n c e 1 t i d ;
t i d f l o w 2 i n v o k e 1 t i d ;

For each activity in the flow we declare a thread, named after the corresponding
tid variable. This thread contains the code that models the execution of the
corresponding activity. For example, the thread corresponding to the sequence
that includes requestCardCharge and requestCCCallBack activities, has the
following structure:

thread f l ow1 s equ en c e1 () {
// code mode l ing r eque s tCa rdCha rge
// code mode l ing r eque s tCCCa l lBack
e x i t ;
}

A Guided Tour through SAVVY-WS 147

Finally, the actual execution of a flow is translated into the invocation of a
helper function launchAndWaitFlowi, which creates and starts a thread for each
activity in the flow, and returns to the caller only when all the launched threads
terminate. This function has the following form (in the case of flow1):

func t ion launchAndWaitFlow1 () {
boolean temp0 ;
l oc l o c 0 : do {

f l ow1 s e q u e n c e 1 t i d := s t a r t f l ow1 s equ en c e1 () ;
f l ow1 s e q u e n c e 2 t i d := s t a r t f l ow1 s equ en c e2 () ;

} goto l o c 1 ;

l oc l o c 1 : do {
temp0 := threadTerminated (f l ow1 s e q u e n c e 1 t i d)

&& threadTerminated (f l ow1 s e q u e n c e 2 t i d) ;
} goto l o c 2 ;

l oc l o c 2 : when temp0 do{} r e t u r n ;
when ! temp0 do{} goto l o c 1 ;

}

The assignPL activity is not translated since it only updates the partner link
references of the process and thus it does not change the state of the process.

Once the basic model of the BPEL process has been created, it can be then
enriched by exploiting assumed assertions. AAs can provide a better abstraction
of the values deriving from the interaction with external services and they can also
express constraints on the timeliness of the activities involving external services.

For example, property TowTruckServiceTimeliness represents a constraint on
the value of variable bestServices. This means that we can restrict the range
of the values that can be non-deterministically assigned to that variable, when
modeling the output variable of the selectServices activity. This is shown in
the following code snippet:

choose
when <true> do b e s t S e r v i c e s . towing .ETA :=1;
when <true> do b e s t S e r v i c e s . towing .ETA :=2;

. . .
when <true> do b e s t S e r v i c e s . towing .ETA :=49;
when <true> do b e s t S e r v i c e s . towing .ETA :=50;

end

The next example shows how AAs can be used to define time constraints
for modeling either the execution time of, or the time elapsed between BPEL
activities. The adopted technique is based on previous work on model checking
temporal metric specifications [22]. We insert a code block that randomly gener-
ates the duration of the activity within a certain interval, bounded by the value
specified in an AA. For flow activities, the time consumed by the flow is the
maximum time spent along all paths. By focusing on flow2 (see Fig. 3) of our
example and using properties AllButBankServiceResponseTime and TowTruckAr-
rival, we get the following code:

148 D. Bianculli et al.

i n t (0 ,52) f l ow2 s e q u e n c e 1 c l o c k ;
i n t (0 ,2) f l ow2 i n v o k e 1 c l o c k ;
// o t h e r code
thread f l ow2 s equ en c e1 () {

// code mode l ing orderTowTruck
choose

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 1 ;

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 2 ;

end
// code mode l ing TowTruckProgressNot ice
choose

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 1 ;

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 2 ;

. . .
when <true> do f l ow2 s e q u e n c e 1 c l o c k :=

f l ow2 s e q u e n c e 1 c l o c k + 49 ;
when <true> do f l ow2 s e q u e n c e 1 c l o c k :=

f l ow2 s e q u e n c e 1 c l o c k + 50 ;
end

}

thread f l ow2 i n vok e1 () {
// code mode l ing o r d e rR en t a lCa r
choose

when <true> do f l ow2 i n v o k e 1 c l o c k :=
f l ow2 i n v o k e 1 c l o c k + 1 ;

when <true> do f l ow2 i n v o k e 1 c l o c k :=
f l ow2 i n v o k e 1 c l o c k + 2 ;

end
}
// o t h e r code
ac t i v e thread MAIN {

// o t h e r code
launchAndWaitFlow2 () ;
i f f l ow2 s e q u e n c e 1 c l o c k >= f l ow2 i n v o k e 1 c l o c k do

a s s i s t a n c e T i m e l i n e s s c l o c k :=
a s s i s t a n c e T im e l i n e s s c l o c k + f l ow2 s e q u e n c e 1 c l o c k

;
e l s e do

a s s i s t a n c e T i m e l i n e s s c l o c k :=
a s s i s t a n c e T im e l i n e s s c l o c k + f l ow2 i n v o k e 1 c l o c k ;

end
// o t h e r code

}

A Guided Tour through SAVVY-WS 149

The first two lines of the previous code snippet represent the declarations of
local counters associated with the activities included in the flow (in this case
a sequence and an invoke). The domain of these variables is bounded by the
duration of each activity, as expressed in an AA; for structured activities (e.g.,
a sequence), we take as upper-bound the sum of the durations of all nested
activities.

Each of these counters is then non-deterministically incremented in the body
of the thread that simulates the execution of an activity. After the end of the
execution of the flow, we take the maximum time spent along all paths and assign
it to a global counter, associated with the process (starTowTruckProgress-
Notice clock in our example).

The last step before performing the verification of the model is represented by
translating into BIR the GA we want to verify. In our example, we want to prove
that the time elapsed between the end of activity requestCCCallBack and the
start of activity TowTruckProgressNotice is less than 60 time units (minutes).
To achieve this, we declare a (global) clock that keeps track of the elapsed
time; this is the global variable assistanceTimeliness clock introduced above.
Moreover, we need a boolean flag that will be set to true right after the end
of activity requestCCCallBack, to enable access to the global counter. The
AssistanceTimeliness property can then be translated into a simple BIR assertion:

a s s e r t (a s s i s t a n c e T i m e l i n e s s c l o c k <= 60) ;

Before emitting the actual BIR code, Bpel2Bir performs a static analysis
on the flow graph of the BIR program to detect data variables (i.e., the ones
associated with inbound messages activities like receive and invoke) that are not
used in the computation of the process. If such variables exist, we perform an
optimization that removes them and the corresponding generative code blocks
from the BIR model, to reduce the size of the model itself.

The verification of the (optimized) model of the process has been performed
on a Intel Core 2 Duo 2.1 GHz processor running Apple Mac OS X 10.5.3 and
Bogor ver. 1.2. The verification of property AssistanceTimeliness took 175s; the
model had 708002 states and 2178206 transitions.

6.2 Example 2: Model Checking the Car Rental Agency Process

The basic structure of the Car Rental Agency process contains a while loop, with
a pick activity that waits, at each iteration, for one of the messages described in
Sect. 4.2. This structure is modeled in the following BIR code snippet:

ac t i v e thread MAIN() {
boolean op e r a t i n g ; o p e r a t i n g := t rue ;
whi le op e r a t i n g do choose

when <true> do // code mode l ing f i n dCa r
// code mode l ing lookupCar

when <true> do // code mode l ing carEnterX
// code mode l ing markCarAva i lab leX

when <true> do // code mode l ing ca rEx i tX

150 D. Bianculli et al.

// code mode l ing markCarUnava i lab leX
when <true> do // code mode l ing s t opRen t a l

op e r a t i n g := f a l s e ;
end

end
}

We translated the pick activity into a choose statement, which models the oc-
currence of one of the events waited for by the pick activity. In this way, we
automatically model the mutual exclusion for the occurrence of the events and
the non-determinism in selecting among events that occurred simultaneously.
Variable operating is a boolean flag that keeps the process receiving messages
from external services; it is set to false when a stopRentalmessage arrives, mak-
ing the while activity and then the process terminate. We do not translate the
findCarCB reply activity, since it represents an outgoing communication with
an external service, which does not modify the state of the process.

To model the carInfo variable, which is associated with the arrival of message
findCar and the lookupCar operation, we declare the TCarInfoID enum type3

and the corresponding variable in the BIR model, as shown in the following code
snippet:

enum TCar In fo ID {c1 , c2 , c3}
TCar In fo ID c a r I n f o ;

This variable is assigned a value by means of a choose statement, when the
findCar message is selected by the outer choose statement, which models the
enclosing pick activity. Since there are two nested choose statements, it is possi-
ble to optimize the generated code by flattening and producing only one choose

statement, with a number of alternatives equal to the combination of the incom-
ing messages and their input variables. The resulting code follows this structure:

choose
when <...> do

c a r I n f o := TCar In fo ID . c1 ;
// o t h e r code mode l ing f i n dCa r C1

when <...> do
c a r I n f o := TCar In fo ID . c2 ;
// o t h e r code mode l ing f i n dCa r C2
// o t h e r code mode l ing the o t h e r a l t e r n a t i v e s

when <...> do
// o t h e r code mode l ing c a r E x i t C3

end

The AAs defined for this process can help improve and enrich the BIR model. For
example, property ParkingInOut adds some constraints on when the arrival of a
carExitX (or a carEnterX) message can be “simulated” by the choose statement.

3 To keep the example simple, we assume that there are only three cars available for
renting, to which the three identifiers declared in the enumeration correspond.

A Guided Tour through SAVVY-WS 151

The intuitive meaning of property ParkingInOut (a carExitX message cannot be
received if the last message received was another carExitX) is translated into a
guard for the when statement. The guard consist of a boolean variable named af-
ter the message name (e.g., carEnter c1, carExit c1). The boolean flag is then
assigned a proper value when the corresponding event occurs: e.g., carExit c1 is
assigned the true value when the alternative of the choose statement equivalent
to the corresponding event is selected. The following code snippet clarifies how
these boolean variables are dealt with:

boolean c a rEn t e r c 1 ;
boolean c a r E x i t c 1 ;
. . .
when <! ca rEn t e r c1 > do // code mode l ing carEnterC1

c a rEn t e r c 1 := t rue ;
c a r E x i t c 1 := f a l s e ;
// o t h e r code

As the reader may notice, variable carEnter_c1 is true whenever carExit_c1
is false, and vice versa. However, they are kept distinct as the translator cannot
deduce this relation by simply analyzing the logical predicates of a formula.
A further optimization step includes additional input from the user, when the
relation between two variables/predicates is provided to the translator.

Property CISUpdate makes the translator emit the definition of similar
boolean flags corresponding to the execution of activities markAvailableX,
markUnavailableX and lookupCar. Moreover, it also defines how to generate
the return value corresponding to the invocation of the lookupCar operation.
The following code snippet exemplifies this behavior:

when <true> do // code mode l ing f i n dCa r c3
c a r I n f o := TCar In fo ID . c3 ;
// code mode l ing lookupCar c3
i f markAva i l a b l e c 3 && ! ma rkUnava i l a b l e c 3 do

q u e r yR e s u l t r e s D i f fNo := t rue ;
e l s e do

q u e r yR e s u l t r e s D i f fNo := f a l s e ;
end

where queryResult res DiffNo is the boolean variable corresponding to the
predicate $queryResult/res!="no".

Last, the RentCar GA can be translated into an assert expression, guarded by
a logical predicate corresponding to the antecedent of the formula, as shown in
the following code snippet:

i f c a rEn t e r c 3 && ! c a r E x i t c 3 do
as s e r t (q u e r yR e s u l t r e s D i f fNo == t rue) ;

end

Since the findCarCB, as said before, is not modeled, this assertion is placed right
after the code modeling the arrival of the findCar message.

The verification of the model of the process in Figure 4 has been performed
using the same configuration detailed in the previous section. It took 24ms to

152 D. Bianculli et al.

verify property RentCar; the model had 85 states and 106 transitions. By com-
paring the order of magnitude of the experimental data of the two examples,
the reader will observe how the use of explicit time bounds, as in the On Road
Assistance example, may increase the complexity of a model.

7 Run-Time Monitoring

In SAVVY-WS, service compositions are validated at run time by monitoring
AAs and GAs via Dynamo, our dynamic monitoring framework.

Monitoring rules specify the directives for the monitoring framework; each of
them comprises two main parts: a set of Monitoring Parameters and a Monitor-
ing Property expressed in ALBERT. Monitoring Parameters allow our approach
to be flexible and adjustable with respect to the context of execution. They
are meta-level information used at run time to decide whether a rule should be
monitored or not. We provide three parameters:

– priority, which defines a simple “notion” of importance among rules, rang-
ing over five levels of priority. When a rule is about to be evaluated, its pri-
ority is compared with a threshold value, set by the owner of the process; the
rule is taken into account if its priority is less than or equal to the threshold
value. By dynamically changing the threshold value we can dynamically set
the intensity of probing.

– validity, which defines time constraints on when a rule should be consid-
ered. Constraints can be specified in the form of either a time window or
a periodicity. The former defines time-frames within which monitoring is
performed; when outside of this frame, any new monitoring activities are
ignored. The latter specify how often a rule should be monitored; accepted
values are durations and dates, e.g., “3D”, meaning every 3 days, or “10/05”
meaning every May 10th.

– trusted providers, which defines a list of service providers who do not
need to be monitored.

Figure 5 presents the technologies we used in the implementation, as well
as how the various components interact among themselves. We have chosen to
adopt ActiveBPEL [23], an open-source BPEL server implementation, as our
Execution Engine, and to extend it with monitoring capabilities by using aspect-
oriented programming (AOP) [24]. The Data Manager represents the advice code
that is weaved into the engine. When the engine initiates a new process instance,
the Data Manager loads all that process’ ALBERT formulae from the Formulae
Repository (step 1), and uses them to configure and activate both the Active
Pool and the Data Analyzer (steps 2.1 and 2.2). The former is responsible for
maintaining (bounded) historical sequences of process states, while the latter is
the actual component responsible for the analysis.

The Data Manager’s main task stops the process every time a new state needs
to be collected for monitoring. This is facilitated by the fact that it has free access
to the internals of the executing process. Once all the needed ALBERT internal

A Guided Tour through SAVVY-WS 153

Fig. 5. Monitoring framework

variables are collected (step 3), the process is allowed to continue its execution.
Notice that ALBERT formulae may also refer to external data, which do not
belong to the business logic itself. In this case the data collected from the process
need to be completed with data retrieved from external sources (e.g., context
information), and this is achieved through special-purpose Data Collectors (step
4). Once collected, the internal and the external data make up a single process
state. At this point the state is time-stamped, labeled with the location in the
process from which the data were collected, and sent to the Active Pool (step
5), which stores it. Every time the Active Pool receives a new state it updates
its sequences to only include the minimum amount of states required to verify
all the formulae. The sequences are then used by the Data Analyzer to check the
formulae (step 6).

The evaluation of ALBERT formulae that contain only references to the
present state and/or to the past history (i.e., formulae that do not contain
Until , Between , or Within operators) is straightforward. On the other hand,
the evaluation of formulae that contain Until , Between , or Within operators
depends on the values the variables will assume in future states. From a the-
oretical point of view, this could be expressed by referring to the well-known
correspondence between Linear Temporal Logic and Alternating Automata [25].
From an implementation point of view, the Data Analyzer relies on additional
evaluation threads for evaluating each subformula containing one of the three
aforementioned temporal operators.

154 D. Bianculli et al.

Run-time monitoring inevitably introduces a performance overhead. Indeed
we need to temporarily stop the executing process at each BPEL activity to
collect the internal variables that constitute a new state. Meanwhile, if any
external variables are needed they are collected after the process resumes its
execution. Therefore, the overhead is due to two main factors: the time it takes
the AOP advice to stop the process and activate internal data collection, and
the collection time itself. Exhaustive tests have allowed us to quantify the former
in less than 30 milliseconds. This is the time it takes the advice code to obtain
the list of internal variables it needs to collect. The actual collection time, on
the other hand, depends on the number of internal variables we need to collect.
Once again our tests have shown that, on average, it takes 2 milliseconds per
internal variable. This is due to the fact that the AOP advice code has direct
access to the process’ state in memory, and that ActiveBPEL provides an API
method for doing just that.

More details on how the different components of this architecture work for
monitoring ALBERT properties are given in [12]. Instead, in the next two sec-
tions, we will focus on the Data Analyzer, by describing how it evaluates the
properties of our running examples.

7.1 Example 1: Monitoring the On Road Assistance Process

The first property we consider is BankResponseTime. When the requestCard-
Charge activity is executed, the Data Manager detects, by accessing the Formulae
Repository, that a property is associated with the end of the execution of the
activity. Right after the activity completes, the Data Analyzer starts evaluating
the consequent of the formula.

Since the root operator of the consequent is a logical OR, the Data Analyzer
evaluates the left operand first, i.e., the first conjunction. The left conjunct is
a reference to an external variable: the Data Analyzer asks the Data Collector to
invoke the operation getConnection on the Web service VCG and then it checks
the value of the cost part of the return message. If the value is equal to ‘low’,
the Data Analyzer evaluates the other operand of the logical AND, that is the
Within subformula.

The evaluation of such a formula cannot be completed in the current state,
thus the Data Analyzer spawns a new thread to evaluate the formula in future
states of the process execution. This thread checks for the truth value of its
formula argument, i.e., for the occurrence of the event (notified by the Active
Pool) corresponding to the start of the execution of activity requestCCCallBack,
while keeping track of the progress of a timer, bounded by the second argument of
the Within formula. If the formula associated with the Within operator becomes
true before the timer reaches its upper bound, the thread returns true, otherwise
it returns false.

Since the evaluation of logical AND and OR operators is short-circuited, if
the evaluation of the external variable returned by the Data Collector returns
false, the second operand (i.e., the Within formula) is not evaluated, making the
Data Analyzer start evaluating the other operand of the logical OR, following a

A Guided Tour through SAVVY-WS 155

similar pattern (accessing the external variable, spawning a thread for checking
the Within formula, checking the value returned by this thread). Similarly, if
the first operand of the logical OR evaluates to true, the second operand is not
evaluated.

Property AllButBankServiceResponseTime can be monitored in a similar way,
but without the need for accessing external variables through the Data Collector.
When one of the activities bounded to the Act placeholder is started, the Data
Analyzer spawns a new thread, waiting for the end of the corresponding activity,
within the time bound.

AvailableServicesDistance and TowTruckServiceTimeliness are two examples of
properties that can be evaluated immediately. As a matter of fact, as soon as
the execution of the activity listed in the antecedent of the formula finishes, the
Data Analyzer retrieves the current state of the process from the Active Pool, and
it evaluates the variables referenced in the formula.

Finally, the monitoring of properties TowTruckArrival and AssistanceTimeli-
ness, follows the evaluation patterns seen above. Both formulae include a Within
subformula, which requires an additional thread for the evaluation.

7.2 Example 2: Monitoring the Car Rental Agency Process

Monitoring of property ParkingInOut is triggered by the arrival of a carExitX
message, intercepted during the execution of a pick activity. Right after the ar-
rival of the message, the Data Analyzer evaluates the consequent of the formula,
whose operator is an Until . Such a formula cannot be evaluated in the current
state, thus the Data Analyzer spawns a new evaluation thread. This thread re-
ceives notifications from the Active Pool about new process states being available.
When a notification arrives, the thread evaluates the second subformula of the
Until operator, i.e., it waits for the occurrence of the event carEnterX. If this
subformula evaluates to false, the thread evaluates (in a similar way) the first
subformula of the Until operator. If this subformula is also false, the evaluation
thread terminates by returning false. Otherwise, the thread continues to evaluate
the Until formula in future states.

In property CISUpdate, the evaluation of the antecedent of the formula re-
quires to spawn a new thread, since it contains an Until subformula. First, the
Data Analyzer checks for the end of the execution of activity markAvailableX
and then waits for the thread evaluating the Until subformula to terminate. This
thread evaluates the formula in a similar way as described above, in the case of
the ParkingInOut formula. Once the evaluating thread terminates, the overall
antecedent of the formula, i.e., the logical AND, is evaluated. The consequent
of the formula is thus evaluated only when the logical AND in the antecedent
is true; since it contains the Eventually operator, its evaluation requires a new
thread to be spawned. This thread checks for the occurrence of the event cor-
responding to the start of activity lookupCar; then, it spawns a new thread
—since there is a second, nested, Eventually operator— that then waits for the
end of the execution of activity lookupCar and checks for the value of variable
queryResult.

156 D. Bianculli et al.

Property RentCar is evaluated in a similar way, since the formula follows the
same pattern of the previous one.

8 Related Work

The work presented in [19] is similar to SAVVY-WS, since it also proposes a
lifelong validation framework for service compositions. The approach is based
on the Event Calculus of Kowalski and Sergot [26], which is used to model
and reason about the set of events generated by the execution of a business
process. At design time the control flow of a process is checked for livelocks and
deadlocks, while at run time it is checked if the sequence of generated events
matches a certain desired behavior. The main difference with SAVVY-WS is the
lack of support for data-aware properties.

Many other approaches investigated by current research tackle isolated as-
pects related to the main issue of engineering dependable service compositions.
Design-time validation is addressed, for example, in [27], where the interaction
between BPEL processes is modeled as a conversation and then verified using
the SPIN model checker. In [28], design specifications (in the form of Message
Sequence Charts) and implementations (in the form of BPEL processes) are
translated into the Finite State Process notation and checked with the Labelled
Transition System Analyzer. Besides finite state automata and process alge-
bras, Petri Nets represent another computational model for static verification
of service compositions. They are used to model both BPEL [29] and BPMN
[30] processes; in both cases, the verification focuses on detecting unreachable
activities and deadlocks.

Other approaches focus on run-time validation of service compositions, consid-
ering either the behavior, as in [31,20], or the non-functional aspects [32,33,34],
or both [35].

Design- and run-time validation activities are related to the language that is
used to specify the properties that are to be validated. Besides more traditional
approaches based on assertion languages like WSCoL [36], or languages for defin-
ing service-level agreements (SLAs), such as WSLA [37], WS-Agreement [38] and
SLAng [39], a third trend is based on languages for defining policies, such as WS-
Policy [40]. An extension of WS-Policy, called WS-Policy4MASC, is defined in
[35] to support monitor and adaptation of composite web services. Even though
it is not specifically bound to a validation framework, the StPowla approach
[41] aims at supporting policy-driven business modeling for SOAs. StPowla is a
workflow-based approach that attaches to each task of a workflow modeling a
business process, a policy that expresses functional and non-functional require-
ments and business constraints on the execution of the task.

9 Conclusion

The paper provided a tutorial introduction to the SAVVY-WS methodology,
which supports the development and operation of Web service compositions

A Guided Tour through SAVVY-WS 157

by means of a lifelong validation process. SAVVY-WS’s goal is to enable the
development of flexible SOAs, where the bindings to external services may change
dynamically, but still control that the composition fulfills the expected functional
and non-functional properties. This allows the flexibility of dynamic change to
be constrained by correctness properties that are checked during design of the
architecture and then monitored at run time to ensure their continuous validity.

SAVVY-WS has been implemented and validated in the case of Web services
compositions implemented in the BPEL workflow language. The approach, how-
ever, has a more general scope.

It can be generalized to different composition languages and to other im-
plementations of SOAs, which do not use Web service technologies. We have
described our long-term research vision in [42]: leveraging the experience gained
while working on SAVVY-WS, we want to develop SAVVY, a complete method-
ology for lifelong validation of dynamically evolvable software service compo-
sitions. The ultimate goal of SAVVY is to integrate specification, analysis and
verification techniques, in a technology-independent manner, supported by a rich
set of tools.

Acknowledgements. Part of this work has been supported by the EU project
“PLASTIC” (contract number IST 026995) and by the EU project “S-Cube”,
funded within FP7/2007-2013 under Objective 1.2 “Services and Software Ar-
chitectures, Infrastructures and Engineering”.

References

1. Baresi, L., Di Nitto, E., Ghezzi, C.: Towards Open-World Software. IEEE Com-
puter 39, 36–43 (2006)

2. ICSOC: International Conference on Service-Oriented Computing series (2003–
2008),
http://www.icsoc.org

3. SeCSE Project: Description of Work (2004), http://secse.eng.it/
4. PLASTIC Project: Description of Work (2005), http://www.ist-plastic.org
5. S-CUBE: S-CUBE network (2008), http://www.s-cube-network.eu/
6. NESSI: Networked European Software and Services Initiative (2005),

http://www.nessi-europe.com
7. Papazoglou, M.: Web Services: Principles and Technology. Prentice-Hall, Engle-

wood Cliffs (2008)
8. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services: Concepts, Archi-

tectures, and Applications. Springer, Heidelberg (2003)
9. The SeCSE Team: Designing and deploying service-centric systems: The SeCSE

way. In: Proceedings of Service-Oriented Computing: a look at the Inside
(SOC@Inside 2007), workshop co-located with ICSOC 2007 (2007)

10. ART DECO Project: Description of Work (2005),
http://artdeco.elet.polimi.it/Artdeco

11. DISCoRSO project: Project vision (2006), http://www.discorso.eng.it
12. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web

service compositions. IET Softw 1(6), 219–232 (2007)

http://www.icsoc.org
http://secse.eng.it/
http://www.ist-plastic.org
http://www.s-cube-network.eu/
http://www.nessi-europe.com
http://artdeco.elet.polimi.it/Artdeco
http://www.discorso.eng.it

158 D. Bianculli et al.

13. Ghezzi, C., Inverardi, P., Montangero, C.: Dynamically evolvable dependable soft-
ware: From oxymoron to reality. In: Degano, P., De Nicola, R., Meseguer, J. (eds.)
Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 330–353. Springer, Heidel-
berg (2008)

14. Bianculli, D., Ghezzi, C.: SAVVY-WS at a glance: supporting verifiable dynamic
service compositions. In: Proceedings of the 1st International Workshop on Au-
tomated engineeRing of Autonomous and run-tiMe evolvIng Systems (ARAMIS
2008). IEEE Computer Society Press, Los Alamitos (2008)

15. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1 (2003)

16. OMG: Business process modeling notation, v.1.1. OMG Available Specification
(2008),
http://www.omg.org/spec/BPMN/1.1/PDF

17. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby: Building your own software model
checker using the Bogor extensible model checking framework. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005, vol. 3576, pp. 148–152. Springer, Heidelberg
(2005)

18. Wirsing, M., Carizzoni, G., Gilmore, S., Gonczy, L., Koch, N., Mayer, P., Palas-
ciano, C.: SENSORIA: Software engineering for service-oriented overlay computers
(2007),
http://www.sensoria-ist.eu/files/whitePaper.pdf

19. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service
composition. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 257–273. Springer, Heidelberg (2006)

20. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service
based systems. In: Proceedings of the 2nd international conference on Service-
Oriented computing (ICSOC 2004), pp. 84–93. ACM Press, New York (2004)

21. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software engineering (ICSE 2005), pp. 372–381.
ACM, New York (2006)

22. Bianculli, D., Spoletini, P., Morzenti, A., Pradella, M., San Pietro, P.: Model check-
ing temporal metric specifications with trio2Promela. In: Arbab, F., Sirjani, M.
(eds.) FSEN 2007. LNCS, vol. 4767, pp. 388–395. Springer, Heidelberg (2007)

23. Active Endpoints: ActiveBPEL Engine Architecture (2006),
http://www.activebpel.org/docs/architecture.html

24. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

25. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

26. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1),
67–95 (1986)

27. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proceed-
ings of the 13th International Conference on World Wide Web (WWW 2004), pp.
621–630. ACM Press, New York (2004)

28. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web
Service Compositions. In: Proceedings of the 18th IEEE International Conference
on Automated Software Engineering (ASE 2003), pp. 152–163. IEEE Computer
Society Press, Los Alamitos (2003)

http://www.omg.org/spec/BPMN/1.1/PDF
http://www.sensoria-ist.eu/files/whitePaper.pdf
http://www.activebpel.org/docs/architecture.html

A Guided Tour through SAVVY-WS 159

29. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2-3), 162–198 (2007)

30. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri Nets (2007),
http://eprints.qut.edu.au/archive/00007115/

31. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: Proceedings of the International
Conference on Web Services (ICWS 2006), Washington, pp. 63–71 (2006)

32. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for WS-BPEL. In: Proceedings of the 17th International Conference on
World Wide Web (WWW 2008), pp. 815–824. ACM, New York (2008)

33. Raimondi, F., Skene, J., Emmerich, W.: Efficient monitoring of web service SLAs.
In: Proceedings of the 16th International Symposium on the Foundations of Soft-
ware Engineering (SIGSOFT 2008 - FSE 16). ACM Press, New York (2008)

34. Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA moni-
toring for web services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002,
vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

35. Erradi, A., Maheshwari, P., Tosic, V.: WS-Policy based monitoring of composite
web services. In: Proceedings of the 5th European Conference on Web Services
(ECOWS 2007). IEEE Computer Society, pp. 99–108 (2007)

36. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
269–282. Springer, Heidelberg (2005)

37. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring ser-
vice level agreement for web services. Journal of Network and System Manage-
ment 11(1) (2003)

38. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specifica-
tion, WS-Agreement (2007),
http://www.ogf.org/documents/GFD.107.pdf

39. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE
2004). IEEE Computer Society, pp. 179–188 (2004)

40. W3C Web Services Policy Working Group: WS-Policy 1.5 (2007),
http://www.w3.org/2002/ws/policy/

41. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: StPowla: SOA, Policies
and Workflows. In: Proceedings of the 3rd International Workshop on Engineering
Service-Oriented Applications: Analysis, Design, and Composition (WESOA 2007)
(2007)

42. Bianculli, D., Ghezzi, C.: Towards a methodology for lifelong validation of ser-
vice compositions. In: Proceedings of the 2nd International Workshop on Systems
Development in SOA Environments (SDSOA 2008), co-located with ICSE 2008,
Leipzig, Germany, pp. 7–12. ACM, New York (2008)

A ALBERT Formal Semantics

The formal semantics of the ALBERT language [12] is defined over a timed state
word, an infinite sequence of states s = s1, s2, . . . , where a state si is a triple

http://eprints.qut.edu.au/archive/00007115/
http://www.ogf.org/documents/GFD.107.pdf
http://www.w3.org/2002/ws/policy/

160 D. Bianculli et al.

(Vi, Ii, ti). Vi is a set of 〈ψ, value〉 pairs with ψ being an expression that appears
in a formula, Ii is a location of the process4 and ti is a time-stamp. States can
therefore be considered snapshots of the process.

The arithmetic (arop) and mathematical (fun) expressions behave as expected.
Function past(ψ, onEvent(µ), n) returns the value of ψ, calculated in the nth
state in the past in which onEvent(µ) was true. Function count(χ, K) returns
the number of states, in the last K time instances, in which χ was true, while its
overloaded version count(χ, onEvent(µ), K) behaves similarly but only considers
states in which onEvent(µ) was also true. Finally, function elapsed (onEvent(µ))
returns the time elapsed from the last state in which onEvent(µ) was true.

For all timed words s, for all i ∈ N, the satisfaction relation |= is defined as
follows:

– s, i |= ψ relop ψ′ iff eval(ψ, si) relop eval(ψ′, si)
– s, i |= ¬φ iff s, i �|= φ
– s, i |= φ ∧ ξ iff s, i |= φ and s, i |= ξ
– s, i |= onEvent(µ) iff

- if µ is a start event, µ ∈ Ii+1,
- otherwise, µ ∈ Ii

– s, i |= Becomes(χ) iff i > 0 and s, i |= χ and s, i− 1 �|= χ
– s, i |= Until(φ, ξ) iff ∃j > i | s, j |= ξ and ∀k, if i < k < j then s, k |= φ
– s, i |= Between(φ, ξ,K) iff ∃j ≥ i | s, j |= φ and ∀l if i ≤ l < j then
s, l �|= φ and ∃h | th ≤ tj +K, th+1 > tj +K and s, h |= ξ

– s, i |= Within(φ,K) iff ∃j ≥ i | tj − ti ≤ K and s, j |= φ

where function eval takes an ALBERT expression ψ and a state in the timed
state word si and returns the value of ψ in si.

4 A location is defined as a set of labels of BPEL activities; in the case of a flow
activity, it contains, for each parallel branch of the flow, the last activity executed
in that branch.

Software Manipulation with Annotations in Java

Vincenzo Gervasi and Giacomo A. Galilei

Dipartimento di Informatica
Università di Pisa

Abstract. Annotations are a recent feature introduced in languages
such as Java, C#, and other languages of the .NET family, which al-
low programmers to attach arbitrary, structured and typed metadata
to their code. These languages run on top of so-called virtual execution
environments, e.g. the JVM for Java, and the CLR for .NET languages,
which allow for the run-time generation of executable code. In this paper
we explore how annotations and the dynamic code generation capability
can be used together to provide programmers with high-level methods
for dynamic generation and modification of an application’s code — at
run-time. The paper introduces the @Java language, which is an exten-
sion to Java allowing annotation of arbitrary statements, and the JDAsm
library, which is an infrastructure for bytecode manipulation which uses
@Java annotations to pinpoint the locations and code fragments that are
being manipulated. Together, they allow type-safe and fully symbolic
runtime code modification and generation without any need to explicitly
address bytecode instructions.

1 Introduction

The concept of metadata, which is data describing other data, is one of the main-
stay in computer science, and has been used in a large variety of contexts, from
defining database schema, to structuring digital annotations of medieval manu-
scripts. In this paper, we are mostly interested in program metadata, i.e. data
describing programs. The concept of program metadata arises naturally in those
languages where programs are data, e.g. LISP [16]. In these languages, the normal
ways to describe relationships about different pieces of data can be used equally
well to annotate programs with metadata. However, program metadata are com-
mon in more traditional languages as well, although mostly in a limited way.

The various incarnation of the concept of program metadata can be charac-
terized by five features:

• content: what kind of information is carried by a metadata element
• author: who (person or tool) assigns a value to a metadata element
• lifetime: when a metadata element is attached to a program element, and

when (if ever) it is discarded
• location: where is the metadata stored (e.g., together with the code, or in

a separate location)
• target: to which program elements can a metadata element be attached

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 161–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 V. Gervasi and G.A. Galilei

Table 1. Characterization of some historical forms of metadata

Metadata Content Author Lifetime Location Target

comments free text programmer source source file any lexical
position as
permitted by
the language
grammar

typing types &
signatures

compiler source source file variables,
functions,
objects

compilation
directive
(e.g.#pragma)

instructions to
the compiler

programmer compile time source module

debugging
symbols

symbol name,
address, size,
attributes

compiler object object file module

identification
tags

config tags,
version
numbers

compiler object object file module or
executable

API docs (e.g.
JavaDoc)

API
specifications

programmer source, deploy
to developers

source file (as
comments)

functions,
methods

Interface defi-
nitions

signatures programmer deploy to
developers

IDL file
(CORBA),
WSDL file
(web services)

functions
(CORBA),
methods (web
services)

Versioning info
(e.g., CVS)

release tags revision control
system

configuration
release cycle

versioned
source file

any lexical
position

intellectual
rights manage-
ment (license
info)

legal terms of
use

programmer,
lawyer

source (legal
validity extends
to executable)

source file (as
comments)

module
(typical), code
fragment

development
cycle control

links to design,
rationale, tests,
approvals,
reviews, etc.

program
manager

source to
deploy

source file (as
comments) or
external
management
database

module, unit

Historically, program metadata has been used, in a ad hoc fashion, to convey
specific type of information across various tools, systems or activities in the
development cycle, or across long time spans to different persons working on
a system. For example, traditional forms of comments can be interpreted as
free-form metadata, attached to a specific lexical position in the source code
when the code is written by the programmer, and discarded upon compilation.
Table 1 lists some forms of metadata which are commonly used in programming
and system development practice.

The real weakness of these historical forms is the fact that each metadata
type is defined in a different way, is set and processed by specific tools, and in
most cases has no associated notion of validity of the content (e.g., there is no
way to guarantee that a comment specifying some legal terms will be consistent
with a predefined policy).

In recent times, the notion of program metadata has gained full citizenship
both in the design of languages (e.g., C# [8], Java [14]) and in the correspond-
ing execution environments (.NET CLR [9], JVM [15]). These new forms sport
important differences w.r.t. the historical forms we discussed above:

• they are general purpose, i.e. the schema for their content can be defined
by the programmer, and the mechanism to set and retrieve the content is
not specific to a particular schema;

Software Manipulation with Annotations in Java 163

• they can be applied to generic program elements, with the programmer
being able to declare specific restrictions about which class of elements can
be designated as targets

• they have customizable lifetime and location, encompassing all the
range from source-only metadata (as comments) to run-time metadata (as
typing information with reflection).

Another interesting development linked to the mainstream adoption of virtual
execution environments is the comeback of modifiable code. With the exception
of quasi-quotation mechanisms [7] in certain interpreted languages like LISP [16]
or MetaML [17], the possibility of modifying the running code of an application
has been ruled out in language design and by operating systems (usually with
the assistance of hardware devices, e.g. by using an MMU to forbid writing in
memory pages containing executable code) since the seventies, on the ground of
security concerns.

However, the ability to synthesize, configure, customize or adapt the running
code of an application at run-time, possibly without even requiring a shutdown
of the application itself, is invaluable in many circumstances, as we will see in
Section 5.

While it is certainly true that allowing the uncontrolled modification of ex-
ecutable code is unacceptable in terms of security, very prone to introducing
bugs and potentially disastrous side effects, and can easily be abused or bring
an entire application to an abrupt termination, the type safety of .NET IL [9]
and of JVM bytecode [15] has allowed a safer approach to the issue. In fact, the
standard library in .NET explicitly include means to generate IL code on the
fly, and the class loading mechanism in the JVM provides similar (albeit less
programmer-friendly) features to the same effect.

Both these approaches require however that the programmer synthesizes IL or
bytecode fragments “by hand”, listing instruction after instruction the contents
of the fragment. In short, the programmer is required to be proficient in both a
high-level language (e.g., C# or Java) to write the main bulk of the application
in, and in IL or bytecode, in order to write high-level code which will emit at
runtime the sequence of instructions appropriate to accomplish the task at hand.
Given that programmers who can efficiently write assembly code are increasingly
difficult to find (as a consequence of the demise of machine-code programming),
this requirement is too stringent for most scenarios.

One solution which has been proposed (and implemented) has been to pro-
vide programmatic access to the compiler for the high-level language, so that
applications can generate the source code for a high-level class, then ask the
compiler to compile it, obtain a reference to the compiled class, and finally load
it and invoke some of its methods (see, among others, [4]). However, this method
suffers from a number of inconveniences, including a huge performance hit (both
in time and space, as the whole compiler for the high-level language needs to be
loaded and executed even for a small fragment), the difficulty of programmati-
cally generating the source code, and the possibility of introducing errors which
would cause the compilation of the fragment to fail at run-time.

164 V. Gervasi and G.A. Galilei

In this paper we will investigate a different approach, using program metadata
to drive in a semi-declarative way the run-time synthesis of executable code. We
will refer to Java and the JVM throughout the paper, but the main ideas can
be applied to .NET languages as well, as in part already done in [3, 11]. Section
2 will briefly introduce Java 5 Annotations, and is followed in Section 3 by a
presentation of the @Java language we defined to extend Java 5 Annotations.
Section 4 presents the code manipulation operations we have defined for @Java,
while Section 5 discusses a number of applications for dynamic bytecode ma-
nipulation through annotations. Section 6 offers some conclusions and ideas for
future work, and completes the paper.

2 Java Annotations

2.1 The Annotations Model in Java 5

The Annotations1 introduced in Java 5 allow programmers to associate metadata
to specific program elements. These metadata are characterized by an identifier
(akin to a class or interface name) and by a signature (or schema), akin to the
fields of a class, where each field has an identifier and a value. Custom Anno-
tation types are declared with a syntax similar to that of a class, through the
@interface keyword. Only field of basic types, String, Class, Enum, Annotation,
or arrays of the same are allowed, and default values for them can be defined in
the declaration of the Annotation type (see example in Figure 1-a.).

/* a. an Annotation type to record the link between
requirements and code */

public @interface Requirement {
String id();
String complianceStatement();
String certifiedBy() default "John Doe, program manager";
String date();

};

/* b. and its application to a method */
...
@Requirement(id="M1541", certifiedBy="Paul", date="12/5/2008")
public void applyStyle(TSpan span, Style s)
{

...
}

Fig. 1. An example of Annotation declaration and use

1 In the following we will use the term Annotation, with a capital A, to refer to the
specific form of annotations as used in Java.

Software Manipulation with Annotations in Java 165

More precisely, Annotation support in Java includes:
• a syntax to declare Annotation types (Figure 1-a.);
• a syntax to annotate program elements with instances of Annotation types

(Figure 1-b.);
• an API and library to inspect through reflection the annotations associated

to program elements;
• a format specification, stating how annotations are stored in .class files;
• a tool (called apt, annotation processor tool) for generic processing of anno-

tations in source code at pre-compile time;
• an API and associate library for generic programmatic processing of anno-

tations through the apt facilities.
Since Annotation declarations are themselves program elements, Annotations

can be annotated as well. Two of these meta-annotations (i.e., program meta-
meta-data, data describing how data about the program should be interpreted)
are of particular relevance for our purposes. The first is the retention policy
of an annotation type, allowing the programmer to define its life time: source
only (and discarded upon compilation), source and .class (and discarded upon
class loading), or runtime (preserved in the running system). The second is
the target of an annotation type, allowing the programmer to define to which
program elements it can be attached: other annotations, constructors, fields,
local variables, methods, packages, formal parameters, types.

It can be easily seen how with the ability to define the name, schema, lifetime,
location and target of each custom annotation, all the features of our charac-
terization of annotations from Section 1 have been placed under control of the
programmer.

2.2 Limitations of the Java 5 Annotation Model

While the annotation model presented in the previous section is sufficiently com-
prehensive for the vast majority of applications, it suffers one major drawback
for the purpose of dynamic code manipulation: a too coarse granularity level. In
fact, while the target granularity for data is a single field, parameter, or local
variables, the target granularity for code is a single method. This choice is rea-
sonable in consideration of the fact that methods are the smallest code elements
which can be found in class signatures2, but any code manipulation system that
can only manipulate entire methods could be expressed more easily by using
typed “function pointers” (e.g., the delegate model in C#), and would not be
suitable for fine grained optimization or configuration. We will discuss why fine
grained manipulation is useful in Section 5.

Another minor limitation is that, unlike C#, only a single instance of a given
annotation type can be applied to a given target, even when the Annotation
fields would be different. For example, with reference to Figure 1, we cannot place
multiple Requirement annotations on a method, to signify that it satisfies several

2 But notice that the same principle has not been applied to data, in that local vari-
ables are not visible in class signatures, while all other possible targets are.

166 V. Gervasi and G.A. Galilei

int i;
double t=0;
for (i=0; i<a.length; i++)

t+=a[i];
@Parallel for (i=0; i<a.length; i++)

a[i] /= t;

Fig. 2. An example of statement annotation in @Java

requirements at once. This limitation (for which we could not find a documented
design rationale, and that apparently could be easily lifted by extending a few
Reflection API methods) can be overcome by using array-typed fields, at the
cost of some complication in the code. In our example, we could have used a
String array for the id, certifiedBy, complianceStatement and date fields.
This, however, is a solution which is somewhat contrived, more error-prone and
less general than one could desire.

It should be noted that both these limitations have been identified in other
contexts as well. For example, there is ongoing work on allowing annotations on
each usage of a type which are being discussed for adoption in Java 7 [10] (the
same document cites allowing multiple instances of an annotation on the same
target as an example of possible developments).

3 The @Java Language

Following the example set in [3], we propose to extend the Java language in order
to allow Annotations to be placed on code fragments inside a method, or more
precisely, on any statement.

The resulting language, called @Java, can be reduced to Java 5 by a prepro-
cessor, which serves as compiler for the language.

3.1 Syntax Extension

@Java differs from Java by a single syntax rule, namely

Statement ::= Annotations Statement

which allows annotations to be placed in front of any statement. We refer here to
the Java 5 grammar as presented in [14]§18.1; a more concrete definition which
exploits lookahead to optimize parsing time in the implementation is provided
in [12]. A typical example of a fragment of @Java code is presented in Figure 2,
where a statement annotation @Parallel is used to indicate that all iterations
of a for loop could be executed in parallel.

3.2 Compilation Strategy

The compilation of @Java to Java must satisfy two fundamental requirements:

1. the result of the compilation must be a valid Java 5 program;
2. it must be possible to retrieve which statements were annotated with which

Annotations from the .class data produced by the Java compiler;

Software Manipulation with Annotations in Java 167

The first requirement can be satisfied by simply removing the statement annota-
tions, which is easily performed by visiting the syntax tree of the @Java program
while skipping the annotations nodes corresponding to the grammar rule above.
The second requirement is more tricky, given that we want to use a standard
Java compiler for the back-end compilation.

The strategy we implemented is as follows:

1. an annotated statement of the form A(v) S or A S, where A is an Annotation
and S is a statement, is replaced with a block of the form { Kb(k) S Ke(k) }
where Kb(k) and Ke(k) are special statements which serve as markers (these
will be discussed in the following), and k is a unique identifier for the state-
ment annotation instance.

2. an Annotation is generated for the method containing the annotated state-
ment, with two fields: an array of identifiers ids and, in parallel, an array of
Annotations anns. The contents of these arrays are initialized so that, for
each index i, id[i] = k and anns[i] = A(v) (or A if the form of annotation
without arguments was used).

Thus, statement annotations are lifted to the method (a legal target according to
Java), stored in an array of Annotations (to overcome the problem with multiple
instances of the same Annotation type on a single target), and linked by its index
i to the unique identifier k in the parallel array of identifiers, which is also part
of the method annotation. k in its turn is used to link to the marker statements
Kb(k) and Ke(k). These statements must be such that (i) their presence does
not alter the semantics of the program, (ii) they can be localized in compiled
bytecode, together with their unique key k, (iii) they cannot be optimized away
or otherwise corrupted by any Java compiler.

All these properties can be obtained by using as markers method calls to non-
final, static methods of a special dummy class, with empty bodies, and having
k as their single argument. In particular, since their bodies are empty calling
these methods does not alter the semantics, per (i). The method call sequence
consisting of a iconst n, bipush, sipush, ldc or ldc w instruction to push k
on the stack, followed by a invokestatic instruction to a distinguished method
is easily identifiable in the code, satisfying (ii). And finally, since the dummy
class could be changed after compilation of the invocation, the compiler cannot
optimize away the call by inlining the body, which guarantees (iii).

A few observations are in order. First, it should be noted that the bytecode
sequence is easily identifiable, but not unique. A similar snippet, consisting of a
push followed by a method call, could also be generated in the course of evaluat-
ing an expression like k+o.M(), where it would be followed by an add instruction.
However, since we define only a version of the method M with a single argument
k, cases like the above would be flagged as errors by the compiler, so the risk if er-
roneously identifying the bytecode fragments for the Kb(k) and Ke(k) sequences
is minimal, and in practice confined to hand-crafted bytecode.

Second, the method calls Ke(k) and Kb(k) do not alter the functional seman-
tics of the program, but they could alter its performance, and possibly adversely
impact the meeting of non-functional requirements, since method invocation add

168 V. Gervasi and G.A. Galilei

public void M()
{
...
@A while (...) {

cnt++;
@B(c=1) for (T i: coll) {
...

}
}

}

import jcodebrick.Fragment;
import jcodebrick.MultiA;
...
@MultiA(

ids={1,2},
value={@A,@B(c=1)}

)
public void M()
{

...
Fragment.begin(1);
while (...) {
cnt++;
Fragment.begin(2);
for (T i: coll) {

...
}
Fragment.end(2);

}
Fragment.end(1);

}

Fig. 3. An example of the source-to-source translation performed by the @Java com-
piler. On the left, the source @Java code; on the right, the result of the translation.

a small performance penalty. However, while the Java compiler cannot inline or
optimize away the method calls, an adaptive optimizing JIT compiler can, and
usually will, so in practice even non-functional semantics is preserved.

Third, since method calls in Java can have side effects, and the compiler
cannot be sure which body will be executed for non-final methods (as already
discussed above), it is extremely unlikely that even an aggressively optimizing
compiler will move code across Kb(k) and Ke(k) borders3, so we can rely on the
fact that the compiled bytecode contained between Kb(k) and Ke(k) markers is
indeed the complete and only code for the annotated statement S.

Figure 3 shows an example of how an @Java code fragment is translated to Java
by the @Java precompiler. As a side note, observe how the compilation scheme
can be applied to the empty statement ; (e.g., @Pos;), hence @Java annotations
can be used to assign symbolic names to specific positions in the source code.
On the other hand, statement annotations cannot be applied to return, throw,

3 With the potential exception of deferred stack pops, which however would not affect
the semantics, as the operand stack is supposed to be stable on statement boundaries,
and of the evaluation of side-effect free expressions which only read local variables
and assign to local variables, which could be moved around by the compiler: see [13]
for a discussion of such cases.

Software Manipulation with Annotations in Java 169

break and continue statements, because in that case, the Ke(k) end markers
would be flagged as unreachable code by the Java compiler.

4 Manipulating Annotated Code

As we have seen in the previous section, the statement annotations introduced
by @Java can be used in three capacities:

• to express metadata about program fragment, serving all the needs we in-
troduced in Section 1 (but with a finer granularity, so that metadata can be
more precisely attached to code w.r.t. the standard model of Java 5);

• to assign symbolic names to specific positions in the source code, with a
single-statement granularity; such symbolic references will be available also
at runtime, in executable code.

• to assign symbolic names to code fragments, both in source and correspond-
ing bytecode, and again available at runtime.

We will not discuss in this paper applications of the first role that statement
annotations can serve, focusing instead of using the other two roles for dynamic
bytecode manipulation.

In fact, given the availability at runtime of a system of symbolic names for
places and fragments, established in the source code (or even programmatically,
in more contrived cases), and coupling that with the dynamic class loading sys-
tem provided by the JVM, it becomes possible to insert, delete or move around
parts of the program, and immediately execute the resulting code.

4.1 The JDAsm Library

The code manipulation operations are offered to the programmer through the
API provided by a library called JDAsm [12]. Similar in spirit to other code
manipulation libraries like BCEL [1] or JavaAssist [5, 4], JDAsm was developed
with the goal of offering ease of use through the use of statement annotations,
insulation from the actual bytecode, and good performances, to allow extensive
use at run-time.

We use a lazy evaluation strategy; code manipulation operations requested by
the program are queued and not evaluated, until a build operation is invoked;
at that point, the queued operations are applied in order, and a new class is
generated in-memory hosting the resulting code. In addition to increasing per-
formance, since no intermediate code or classes have to be generated in the course
of the manipulation, this lazy strategy offers an opportunity for optimizing the
operation queue (e.g., all operations modifying a fragment which is later deleted
can be skipped altogether) before the actual build4.

In the rest of this section, we will describe the operations offered by the library,
together with the formal definition of some of them (other operations are defined
in a similar way, see [13] for a fuller account), and an example of application.
4 The current implementation does not apply any optimization; these issues are sched-

uled for future work.

170 V. Gervasi and G.A. Galilei

4.2 Notation and Definitions

Every method of a Java class stores the local variables into the local variable
array. We use L ⊂ N to indicate it, treating a variable just as the index of
its position in L; since the variables are stored in L in growing order starting
from index 0, it will be L = [0, . . . , n). We next introduce the domains of the
variables V and of the instructions I, and define the following functions to obtain
the variables an instruction can read, and those it can write:

rv : I → P(L)

wv : I → P(L)

Let MC be the set of all the methods of a Java class C, and let i ∈ I be
the instance of an instruction, we use IL = 〈i1, . . . , in〉 ∈ IL to indicate an
instruction list (either the body of a method or just a part of it). Then we define
the following:

µ : MC → IL

as the function that given a method m ∈ MC returns all its bytecode as a list
of instructions; with a slight abuse of notation we will write IL ⊆ m to indicate
that IL is a contiguous sublist of µ(m). We use the function ι to retrieve the
index of an instruction i in an instruction list:

ι : IL × I → N

to simplify the notation, we will overload ι as follows:

ι : MC × I → N

ι(m, i) = ι(µ(m), i)

The set of local variables referred to by an instruction or an instruction list
(again, overloading the notation for simplicity) is defined as

loc(i) = rv(i) ∪ wv(i)

loc(IL) =
⋃

i∈IL

loc(i)

Let α be a statement annotation inserted in the source code to mark a state-
ment (typically a block statement) inside a method m ∈ MC . Then we define a
Fragment f as the section of bytecode of m identified by the triple r = 〈id, α, m〉,
where the id is the unique identifier generated by the pre-compilation parser. A
fragment is the smallest part of code that the user can manipulate by moving it
and deleting it. It is defined as:

f = 〈ib, ie, r〉 where ib ∈ r.m, ie ∈ r.m, b < e

Each fragment f is delimited by two markers called starting marker Kf
b (im-

mediately preceding ib) and ending marker Kf
e (immediately following ie). Each

marker is a two-instruction sequence, Kf
b1

and Kf
b2

, Kf
e1

and Kf
e2

, which are the

Software Manipulation with Annotations in Java 171

result of compiling the marker method calls inserted by the @Java compiler in
place of a statement annotation. They include:

• An instruction Kf
b1

= Kf
e1

to push onto the stack the value of f.r.id

• A static call to an empty method, one for any Kf
b2

and another one for any
Kf

e2

Between the markers, f includes l >= 0 inner instructions, and we use this
function to get them:

ν(f) = IL

Thus, given a method m ∈ MC of n instructions, and a fragment f of length
l in m, we will have

µ(m) = 〈i1, . . . , Kf
b1

, Kf
b2

, ij , . . . , ij+l−1, K
f
e1

, Kf
e2

, . . . , in〉

A fragment is valid if it does not contain any jump instruction targeting an
instruction outside of the fragment, with the exception that a jump immediately
after the end of the fragment (i.e., to the first instruction following the last
instruction in f) is considered valid. This condition excludes as valid fragments
any part of code which contains a break or continue instruction which would
continue the execution to locations not included in the fragment, and, depending
on the compilation scheme used by the Java compiler, certain statements with
return or throw clauses embedded in an outer try-catch-finally statement
(in all these cases, the compiled code would include a jump to the code for the
finally clause). In the following, we concern ourselves only with valid fragments.

It should be noted that multiple fragments in m never overlay each other
and are always correctly nested, i.e. they are either disjoint, or one is entirely
contained in the other. This is guaranteed by the grammar of @Java under the
assumption that the compiler preserves the nesting structure of blocks in the
compiled code (an assumption which holds true for all current major compilers).
For instance, given two fragments f ′ and f ′′ (appearing in this order) in the
same method m, their markers K ′

s, K ′
e, K ′′

s ,K ′′
e , and the index in the IL ⊆ m

of such markers, a = ι(m, K ′
s), b = ι(m, K ′

e), c = ι(m, K ′′
s), d = ι(m, K ′′

e), then
either a < b < c < d or a < c < d < b.

4.3 Operations

We define four operations over fragments:

• opsrc, to search and retrieve fragments;
• opins, to insert a fragment at the start or end of another fragment;
• opdel, to delete a fragment from the code in which it appears;
• opxtr, to extrude a fragment, and execute it outside its context.

In the following, we provide a full formal definition only for opins, while for other
operations we provide only a partial definition to support the intuition, omitting
some details due to space considerations.

172 V. Gervasi and G.A. Galilei

4.3.1 Search
Through the search operations the user is able to retrieve and get a reference
to the fragments declared in a Class C. The operation is offered in several over-
loaded forms, allowing searches according to different criteria. Remembering that
r = 〈id, α, m〉, then we have this four overloaded operations (all forms take a
class or a single method as argument, and then more arguments to specify which
annotated fragments in the class should be retrieved):

opsrc : C × N → F given a class and an id, returns the frag-
ment with that id in the class;

opsrc : MC → 〈F1, . . . , Fn〉 given a method, returns the list of frag-
ments defined in that method;

opsrc : C × A → 〈F1, . . . , Fn〉 given a class and an annotation type,
returns the list of fragments annotated
with that type in the class;

opsrc : MC × A → 〈F1, . . . , Fn〉 given a method and an annotation type,
returns the list of fragments annotated
with that type in the method.

For brevity we omit here a formal definition of these operations, which are
clerical in nature; the interested reader can refer to [13] for the details.

4.3.2 Insertion
Through the insertion operation the user can inject the bytecode of a source
fragment fs into a specific position in a method m of a class C. The destination
position is related to a destination fragment fd, and it can be one of before start,
after start, before end, after end, which indicate, respectively, that fs is to be
inserted before the starting marker of fd, after the starting marker of fd, before
the ending marker of fd, and after the ending marker of fd. The possibility
of inserting code inside and outside the destination markers has consequences
in concatenated operations that involve the destination fragment fd more than
once. For instance, given four fragments A, B, T , Z, by inserting A into T in
position before start, then inserting B into T in position after start, and finally
inserting T into Z, the code of B will be carried into Z through T , but not the
code of A, which has been inserted outside the markers of T .

Given a fragment f , let IL = ν(f) be its instruction list. IL can use and
modify local variables, so we need to consider the source method ms = fs.r.m,
the destination method md = fd.r.m and their respective local variables. Any
variable has its own scope; the following function:

scope(IL, v) = (j, k) | v ∈ V j, k ∈ N

is defined to return the pair j and k as the boundary index of the instruc-
tions in IL where the scope of v is valid (this information is provided by

Software Manipulation with Annotations in Java 173

the Java compiler among the metadata carried with Java classes, in the table
LocalVariableTableAttribute).

Given an instructions list IL, a free variable v′ ∈ loc(IL) is a variable whose
scope is defined outside IL:

v′ ∈ loc(ν(fs)) | (j, k) = scope(µ(ms), v′), j < ι(m, kf
s1

) ∧ k > ι(m, kf
s2

)

When we want to deal with insertion of a source fragment fs that uses the
free variable v′, we need the user to specify a valid mapping among all the free
variables in fs with the variables in md whose scope covers the insertion point.
We use a function to get the subset of loc(IL) of all the free variables in IL:

floc(IL) = {v ∈ loc(IL) | v is free}

Let Vm = {vs1 → vd1 , . . . , vsn → vdn} be a user defined mapping that asso-
ciates to any free variable vsi of fs a valid variable vdi of fd (valid variables are
those that are in-scope at the insertion point and have the appropriate type; the
mapping is specified by name in the implementation for ease of use, but here we
will only refer to the variable indexes), then we define the operation of insertion
as the function that given a source fragment fs, a destination fragment fd, a
position p and a mapping Vm, inserts the new fragment in the same method md

of fd, and returns m′
d to indicate that the instruction list IL of md has been

modified.
opins : F × F × P × Vm → MC

Other aspects have to be considered in addition to free variable mapping in
implementing this operation. In particular, there are cases where the insertion
cannot be performed in a type-safe way. If the source bytecode contains a return
instruction, we have to check that the return type is compatible with the re-
turn type of the destination method. To model this, we introduce the following
functions:

ret : I → Type

ret : MC → Type

(where Type is one of the basic types of the JVM) defined as:

ret(i) =
{

t if i is the RETURN instruction for type t
∅ otherwise

ret(m) =
⋃

i∈µ(m)

ret(i)

with |ret(m)| ≤ 1, that is, since we are working on an already loaded class,
guaranteed by the bytecode verifier.

If ∃i ∈ ν(fs) such that ret(i) �= ∅ ∧ ret(i) �= ret(md) (i.e., a return instruction
whose type differs from that of the method it is being injected into), then the
fragment is not compatible with the method and the insert operation fails return-
ing an error. As we have already seen, free variables are renumbered through the
user-supplied mapping Vm; all other variables need to have their index shifted
so that they do not conflict with the local variables of fd. Since all variables
in md use their own index into the local variable array L and the variables

174 V. Gervasi and G.A. Galilei

goto end
catch: new jcodebrick/FragmentRTE

dup_x1
swap
invokespecial jcodebrick/FragmentRTE."<init>":(Ljava/lang/Throwable;)V
athrow

end:

Fig. 4. The IL code for the catch blocks appended at the end of fragments for the
insertion operation

V ∈ loc(ν(fs)) with V /∈ floc(ν(fs)) might use the same indexes, to avoid the
risk of overlaying the two sets, we compute the higher index h used by md and
add h to any index used in V .

Furthermore we consider the possibility that IL = ν(fd) is included inside
a try-catch block. Since we cannot determine by looking at IL alone if its in-
structions can raise an exception, we conservatively assume that they can, and
surround the inserted code with a brand new try-catch block that will catch
any exception, and handle it by throwing a new RuntimeException (having the
original exception in its cause field) in the catch block.

It should be noted that our choice is not the only possible one. Another
possibility would be to update the signature of md to accommodate for the
additional exceptions which could be raised by the inserted fragment. This choice
however would violate the API contract between the method and its callers, and
make seamless replacement of code difficult, while our approach, based on the
unchecked RuntimeException, does not suffer from this difficulty.

We define an exception as the tuple exc = 〈ExcType, j, k, h〉 with its type,
the indexes j and k as delimiters of the scope of the try block and the index
h of the first instruction of the catch block. This information is held in the
Java class file into the exception table field of the Code attribute for the
method. We will indicate with et(m) the exception table of a method m, accord-
ing to its Code attribute, containing metadata about the type and indexes of
all try/catch blocks, and with te(m) the set of ExcTypes thrown by a method
m, according to its signature.

The set of exception types which might be thrown by a fragment f = 〈ib, ie,
〈id, α, m〉〉 is defined as follows:

tc(f) = te(m) ∪ {ET | 〈ET, j, k, h〉 ∈ et(m) ∧ j ≤ b ∧ e ≤ k}

The code that will be inserted at the end of fs in case we have to add the
catch block will be that shown in Figure 4; we will denote that instruction list
with ILRT .

With the above definitions, we say that an insertion operation opins(fs, fd,
p, Vm) is valid if the following conditions are met:

1. floc(fs) = domain(Vm);
2. ∀v ∈ range(Vm), scope(ν(fd), v) = (j, k) =⇒ j ≤ ip(fd, p) ≤ k;
3. ∀(v → w) ∈ Vm, type(v) = type(w);
4. ∀i ∈ ν(fs), ret(i) = ∅ ∨ ret(i) = ret(fd.m).

Software Manipulation with Annotations in Java 175

where domain(m) and range(m) are, respectively, the set of keys and of values
in a mapping m; ip(f, p) returns the index of the insertion point for a fragment f
with a position p (it will be the index of the begin or end marker of f , depending
on p), and type(v) is the VM type of a variable v.

An invalid insertion operation results in an InvalidBuildException being
thrown at build time, and the operation is aborted. If the operation is valid, the
insertion proceeds as follows.

First, the local variables in the IL associated with the source fragments are
renumbered, to avoid clashes with the variable already used in the destination
fragment. Then, free variables are mapped according to Vm, and finally a try-
catch block is added, if needed, to capture and turn into RuntimeException all
exception thrown by the source fragment which are not handled in the destina-
tion method. Formally, this process is described in the following.

Let h = maxv∈loc(µ(fd.m))(v) be the index of the highest-numbered local vari-
able in the destination method. Then a new instruction list IL′ = 〈i′1, . . . , i′n〉 · θ
is obtained by copying and modifying the instruction list of the source fragment
IL = 〈i1, . . . , in〉 in such a way that

i′j =

⎧⎪⎪⎨
⎪⎪⎩

ij

[
v + h

/
v

]
if v ∈ loc(ij) and v is not free

ij

[
w
/
v

]
if v ∈ loc(ij) and (v → w) ∈ Vm

ij otherwise

and
θ =

{
ILRT if tc(fs) \ tc(fd) �= ∅
〈〉 otherwise

The resulting method m′
d will be such that its instruction list will be updated

to insert IL′ at the location specified by p and fd; its exception table is updated
to include the possible addition of try-catch blocks for the inserted fragment;
and its LocalVariableTableAttribute is updated to include the new local
variables carried into the method by the inserted fragment. In all other respects
(e.g., signature, throws clause, debug attributes, etc.) m′

d is identical to md.
We only define fully the case for p = before start (the other cases are totally

analogous), where if

µ(md) = α · 〈Kfd

b1
, Kfd

b2
〉 · β · 〈Kfd

e1
, Kfd

e2
〉 · γ

then the result of the insertion is m′
d such that

µ(m′
d) = α · 〈K ′fs

b1 , Kfs

b2
〉 · IL′ · 〈K ′fs

e1
, Kfs

e2
〉 · 〈Kfd

b1
, Kfd

b2
〉 · β · 〈Kfd

e1
, Kfd

e2
〉 · γ

and
et(m′

d) = et(md) ∪ E

where K ′fs

b1
, K ′fs

e1
are similar to Kfs

b1
, Kfs

e1
, respectively, except in that they have

a fresh unique id (a larger id may require a different opcode), and

E = { (ET, j, k, k) | ET ∈ tc(fs) \ tc(fd),
j is the initial index of IL′ in µ(m′

d),
k is the index of the catch label from θ in µ(m′

d) }

176 V. Gervasi and G.A. Galilei

As a final technicality, the max stack, max locals, code length, code,
exception table length, exception table, attribute info of the Code at-
tribute for m′

d are updated as needed, and a copy of the Annotation for fs with
the new fresh id used in K ′fs

b1
and K ′fs

e1
is added to the annotations for m′

d.

4.3.3 Deletion
To delete a fragment f from a method m means to re-emit the bytecode of
m without the instructions delimited by Kf

b and Kf
e . We define three types of

deletion: delete without markers, delete with markers, delete only markers where
respectively the bytecode included by f is deleted but the markers are not, the
bytecode is deleted and the markers are too, and only the markers are deleted
while the bytecode included in f is left untouched.

The operation of deletion is defined as the function that, given a method m,
a fragment f in m, and a type t of deletion, returns m′ which is identical to m
except that part or all of µ(m) is not present in it anymore:

opdel : MC × F × T → MC′

Since the @Java compiler inserts fragment markers only at the begin and at the
end of a statement, we are guaranteed that a deletion cannot overlap a try-catch
block nor the scope for a variable, and that the corresponding fragment can-
not contain an instruction which is a target from an external jump instruction.
Furthermore, since the Java compiler always adds an explicit return instruc-
tion at the end of a void method, we are assured that the return type from a
method’s code cannot be changed by a deletion. Hence, a deletion does not need
any structural change to a method.

We only define fully the case for t = delete without markers (the other cases
are totally analogous), where if

µ(m) = α · 〈Kf
b1

, Kf
b2

〉 · β · 〈Kf
e1

, Kf
e2

〉 · γ

then the result of the deletion of f is m′
d such that

µ(m′) = α · 〈Kf
b1

, Kf
b2

, Kf
e1

, Kf
e2

〉 · γ

We also need to remove from the exception table all the try-catch blocks which
were entirely contained in the removed fragment f , and possibly compact the
local variable table by removing all variables whose scope was entirely within
f . Again, addresses in µ(m′) are renumbered, and the various Code attribute
fields are recomputed as needed. These operations are similar to those we already
described for opins, and for brevity we do not provide all the details here (the
interested reader can refer to [13] instead).

4.3.4 Extrusion
The extrusion operation makes it possible to execute the code of a fragment as a
self-sufficient method, outside of its original context. The result of the operation
is a new class, containing a single static method exec (and the default empty
constructor), whose body is the IL of f .

Software Manipulation with Annotations in Java 177

opxtr : F → C

The signature of the exec method is synthesized by looking at the return type
of instructions in f (which determine the return type of the method), at the set
of free local variables (which determine the arguments number and types), at
whether f.m was static or an instance method (to determine whether to add
an additional this parameter), and finally at the exception table for f.m (to
determine the throws clause for exec). In particular:

• The return type for the method is given by ret(f.m), subject of course to the
condition that |ret(f.m)| ≤ 1 (which, however, is already guaranteed by the
bytecode verifier). Since the bytecode verifier also guarantees the absence of
unreachable code in the source method, it is always the case that the last
instruction of a fragment is not a Treturn (remember that we have added
two instructions at the end of such fragment, Ke). To further guarantee that
any branch in exec terminates with a Treturn instruction, in synthesizing
the method we append such an instruction at the end of Kf

b (k) ·ν(f) ·Kf
e (k),

with a fresh k, and optionally preceded by an instruction to push the default
value for the return type (see [15]§2.5.1).

• All free variables in floc(ν(f)) are lifted to method arguments, with the
appropriate5 types. As part of this lifting of free variables to arguments,
all references to variable indexes in ν(f) are renumbered accordingly (so
that the n = |floc(ν(f))| free variables lifted to argument occupy indexes
0 . . . n − 1 and local variables whose scope is entirely contained within f
occupy indexes ≥ n.

• The set of exception thrown by exec is determined as
te(exec) = tc(f)

which indicates that any exception which is declared to be thrown by the
source method, or caught by a try-catch surrounding f , is added to the
throws clause of exec.

It should be noted that changes to local variables of extruded fragments are lost
upon return from the synthesized method. This is a limitation of our approach,
which derives from the lack of out variables in Java.

4.4 Examples

Let us consider an application which has to perform frequently some check on
given conditions. These checks can be very thorough and complex, and com-
putationally expensive, but in most cases a more basic and more efficient ap-
proximation might be sufficient, depending on environmental conditions. As will
be described in Section 5, we envision a situation where the checks have to be
performed in real-time, so we do not want to pay the penalty for an indirect
method call each time, and decide to use runtime code manipulation instead.
5 Notice that types inferred this way may differ from those in the source code; for

example, short local variables will be promoted to int when lifted as arguments,
according to the standard type conversion rules of the JVM [15]§3.11.1.

178 V. Gervasi and G.A. Galilei

The method performing the checks could be as follows:

@Java Source @Java compiled code

class C1 {
...
public void m()
{
...
@ComplexChecks {

/* complex check code */
}
...

}
...
}

import jcodebrick.Fragment;
import jcodebrick.MultiA;

class C1 {
...
@MultiA(

ids={1},
value={@ComplexChecks})

public void m()
{

...
{
Fragment.begin(1);
/* complex checks code */
Fragment.end(1);
}
...

}
...
}

The compiled @Java code will be in turn compiled by the Java compiler into the
following bytecode:

@MultiA{ids={1}, value={@ComplexChecks}}
method m():

Code:
// Initial method code
...
// Starting marker Kb

iconst 1
invokestatic jcodebrick/Fragment.begin
...
// complex checks code

...
// Ending marker Ke

iconst 1
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

Software Manipulation with Annotations in Java 179

The code to replace at runtime the complex checks fragment with the basic
checks one, and invoke the modified method, could be as follows:

CbClass c = new CbClass(C1.class);
Fragment complex = c.getFragment("ComplexChecks");
Fragment basic = c.getFragment("BasicChecks");
...
complex.insertFragment(Fragment.BEFORE START, basic);
complex.delete();
C1 cc=(C1)c.build().newInstance();
cc.m();

The bytecode of the modified method m is obtained through these two steps:

After the insertion After the deletion

Code:
// Initial method code
...
iconst 4
invokestatic jcodebrick/Fragment.begin
...
// Basic Fragment code
...
iconst 4
invokestatic jcodebrick/Fragment.end
iconst 1
invokestatic jcodebrick/Fragment.begin
...
// Complex Fragment code
...
iconst 1
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

Code:
// Initial method code
...
iconst 4
invokestatic jcodebrick/Fragment.begin
...
// Basic Fragment code
...
iconst 4
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

4.5 Performance

Given that one of the major advantages of our proposal over previous research
is its ability to perform code manipulation at runtime, we are particularly con-
cerned about its performances.

We have compared the execution times of typical @Java operations using
different libraries for bytecode engineering. In particularly, JDAsm performances
have been compared to that of BCEL [1] and JavaAssist [5, 6], using the latter
both at source level and at bytecode level. In particular, we have measured the
performances of the three libraries in the synthesis of a new Java class (as in our
build operation), containing a single “Hello world” method.

180 V. Gervasi and G.A. Galilei

Library Time
BCEL 172ms
JavaAssist (source level) 188ms
JavaAssist (bytecode level) 78ms
JDAsm 62ms

Fig. 5. Execution times for the class synthesis benchmark

The experimental results, obtained by averaging 20 runs of the equivalent
generating code for the three libraries are shown in Figure 5. As can be seen,
JDAsm is substantially faster than both BCEL and JavaAssist in source mode,
and offers performances comparable (and slightly better) with those of JavaAs-
sist used in bytecode mode, but with the advantage of being able to compose
the method symbolically, rather than having to handle each individual bytecode
instruction.

5 Applications

The ability to modify the running code of an application in a structured, symbolic
and type-safe way, while leaving the programmer able to express code fragments
in source form, opens the way to a vast number of novel applications. In the fol-
lowing we will only list a few examples, serving as conceptual scenarios but with
no aim of completeness. Before going into the details, it is worth remarking that
similar techniques have been used already in the past, albeit typically in an ad
hoc fashion, and often at the source level (e.g., classical aspect-oriented program-
ming), or at program installation time (e.g., configuration-selecting installers, as
in a OS installer that only installs drivers needed for the actual hardware). In
contrast, our proposed technique is totally general, annotation can be used both
at the source level and at the bytecode level, and operations can be performed
at any stage of the life cycle of the application, even while the application is
running and without requiring a restart.

5.1 Logging

At installation time, a program could contain statements whose purpose is to
compute and log to some external file certain values describing the state of the
application during its execution, as a way of monitoring its performances and
correctness. After monitoring the system’s logs for a while, it can be determined
that the system is behaving correctly, and that there is no longer a need for a
detailed log.

Current logging frameworks (e.g., Log4J [2]) can enable or disable the output
to the log file dynamically, but cannot avoid computing the values, which might
be costly or have other undesired side effects. In contrast, with @Java the logging
statements (or blocks) can be marked with an annotation such as @Log(level),
and when it is determined that logging is no longer required, all the logging blocks

Software Manipulation with Annotations in Java 181

below a given severity level can be removed from the running code, thus avoiding
any associated computation and possibly improving performances significantly.

As a related example, the @Log fragments could be removed leaving the mark-
ers in place, and stored in a data structure, together with a reference to their
original location. This way, it becomes also possible to reinstate them if at a
later time logging is desired again.

5.2 Environment-Based Reconfiguration

It is often the case that a system has to react differently to certain events based
on changing environment conditions. For example, a heavy-load dispatcher for
a web server farm could operate normally under standard operating conditions,
while monitoring the response times of the system. If these become too high,
it could install in its running code a fragment to monitor incoming requests
especially to identify denial-of-service attacks (this might entail maintaining and
updating complex data structures, to perform pattern matching on the requests
data and to identify sets of IP addresses from which a potential distributed-
DoS attack is coming). If no DoS attack is recognized, the dispatcher would go
back to the standard dispatch code. On the other hand, if such an attack is
identified, the dispatcher could further substitute its request-dispatching code
with a more precise, but less efficient, version which would guard against requests
coming from potential DoS sources. The assumption here is that the more precise
dispatching code, rejecting DoS requests upfront, will save processing costs later
on in the requests handling chain. If, after some time, it is determined that the
DoS attack has ended, the original, optimistic but faster code can be replaced
again inside the dispatcher.

In a more flexible implementation, both attack-detecting code and hardened
dispatching code could be loaded dynamically based on the type of attack, thus
making the system able to detect and respond optimally to different threats.

Similar behavior could be obtained by calling virtual, abstract or interface
methods to perform the monitoring, detection and dispatching functions, and
switching to different implementations of the same when appropriate. How-
ever, this standard technique would leave several method invocations in place
even when they are not needed, which might be undesirable for a very high-
performance system. On the contrary, with @Java the mutable code is substituted
in-place, with no need for indirection, thus guaranteeing better performances
both in the optimistic case and in the hardened one.

5.3 Dynamic Optimization

A numeric application could include some heavy computation, which could be
performed either in floating point (e.g., using doubles) or in fixed point (e.g.,
using ints and then scaling the results by a fixed amount). At install time, the
application could measure the performances of both, and then insert into its own
computation code the version which offers better performances.

Again, similar results could be obtained by guarding the computation with
an if statement, or by calling a method, but if the variable fragment has to

182 V. Gervasi and G.A. Galilei

be executed a relevant number of times (which is not uncommon, e.g. with
large matrix operations), the cumulative cost of evaluating the flags or calling
the methods, multiplied by millions or billions of invocations, could become
significant. In contrast, with @Java the insertion of the proper fragment in-line
would be performed only once, regardless of the number of times the fragment
is run.

It is also worth remarking that the choice between different versions of a code
fragment could be done dynamically, possibly switching between multiple ver-
sions based on external conditions. For example, using a floating point version
can be too costly if another numerical application is running concurrently (e.g.,
due to the need of storing and retrieving all the FPU registers at every context
switch), but may be more convenient otherwise, so the application could periodi-
cally re-check the performances of the various versions of the code available, and
choose a different one to execute based on current performances (again, saving
on indirection costs as the chosen fragment would be inserted in-line).

5.4 Adaptable Declarative Security

The native security model in Java is operational, meaning that code performing
a protected function has to call specific methods to check whether the caller has
the right permission to invoke the given function. This might be inconvenient
and error-prone, and moreover the entire security model of an application is
wired-in once the application is written and compiled6.

With @Java, a programmer can mark relevant sections of code with an-
notations such as @GrantPermission(perm), @AcquirePermission(perm) and
@RequirePermission(perm), thus moving to a declarative model instead. One
of the advantages is that in @Java permission-related annotations can be placed
on statements and blocks, thus providing finer control over which sections of the
code are critical (and satisfying Denning’s principles). Another advantage is that
the operational code needed to actually grant, acquire and check permissions can
be injected at the appropriate places automatically, and – moreover – it can be
changed, at runtime, to suit different security models as appropriate from time
to time.

5.5 Parallelization

In parallel applications, it is customary to use dialects of common programming
languages extended with keywords used to declare properties relevant for the
parallel execution of the code. This approach typically requires custom compilers,
which produce parallelism-handling code based on the custom keywords.

As we have seen in Figure 2, we could use a @Parallel annotation placed
on a for statement to declare that the iterations of the for are independent
and could potentially be executed in parallel. Then, an application could inject
6 The Java security model provides for that by externalizing policy decisions in a

text file which can be edited by the user, but with limited flexibility, essentially
implementing a source-based permission policy.

Software Manipulation with Annotations in Java 183

in those places code to actually realize the parallelism, choosing whatever im-
plementation is more appropriate for the JVM/OS/hardware combination the
program is running on (e.g., no parallelism at all, or creating a certain number
of threads or processes based on how many CPUs are available on the machine,
etc.).

Even more interesting, with the emergence of virtualization systems, it is
becoming increasingly common that an application can be run on a virtualized
server, and in that case the server could be dynamically reconfigured to allocate
or simulate a variable number of CPUs - in which case, the application can react
by changing its parallelization strategy and injecting different thread-handling
fragments at @Parallel locations.

6 Conclusions and Future Work

In this paper we have introduced @Java, a variant of Java which permits to
manipulate an application code at runtime in a structured, symbolic and type-
safe way, by using annotations placed on single statements or blocks to define
code fragments and locations in the code.

While sharing similarities in its scope with traditional aspect-oriented pro-
gramming techniques, our contribution places a greater emphasis on the possi-
bility of manipulating the code at run-time, whereas aspect weaving is typically
performed at compile-time only. This important distinction opens the way to
a number of applications for which standard AOP techniques are not flexible
enough.

The techniques we presented, building on top of execution technology provided
by virtual execution environments and on novel language features such as custom
annotations, change in a fundamental way the notion of lifecycle of a program.
Whereas customarily writing, compiling, linking, shipping, deploying, installing,
loading and running a program were considered completely distinct phases, the
ability to identify and process annotations both in source and in object (.class)
form, and at runtime in executable code, in a sense blends this phases. Now, pro-
gram code can be written at run-time; compilation can execute user-provided code
based on annotations found in source files, an installer can manipulate the object
code that has been deployed based on a specific machine architecture, etc.

The @Java language and its code-manipulation capabilities are a contribution
towards reaching this vision, in which code manipulation and program re-writing
is a substantial part of execution. The language itself could be extended to
address annotation of (sub-)expressions, to cover cases where one might want to
manipulate, say, a new expression, or a method invocation. We intend to address
this issue as part of future work.

More work is also needed in two other directions: (i) on the application side,
by providing run-time support and case studies for common needs (e.g., logging,
security, parallelism), and (ii) on the technological side, by providing more flex-
ible and more efficient implementations of the code-manipulation primitives we
have defined.

184 V. Gervasi and G.A. Galilei

The @Java source-to-source compiler and the associated JDAsm code ma-
nipulation library have been released as open source, and are currently avail-
able, respectively, at http://at-java.sourceforge.net and http://jdasm.
sourceforge.net.

Acknowledgments. The authors would like to thank Antonio Cisternino for
providing invaluable input and ideas, and Cristian Dittamo and Nicola Gior-
dani for working on the implementation of related technologies as part of their
M.Sc. work.

References

[1] Apache Software Foundation. Bcel: Bytecode engineering library,
http://jakarta.apache.org/bcel

[2] Apache Software Foundation. Apache log4j (2007),
http://logging.apache.org/log4j

[3] Cazzola, W., Cisternino, A., Colombo, D.: [a]C#: C# with a customizable code
annotation mechanism. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS,
vol. 3897, pp. 1274–1278. ACM, New York (2006)

[4] Chiba, S.: JavaAssist., http://www.csg.is.titech.ac.jp/∼chiba/javaassist
[5] Chiba, S.: Load-time structural reflection in Java. In: Bertino, E. (ed.) ECOOP

2000. LNCS, vol. 1850, pp. 313–336. Springer, Heidelberg (2000)
[6] Chiba, S., Nishizawa, M.: An easy-to-use toolkit for efficient java bytecode trans-

lators. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp.
364–376. Springer, Heidelberg (2003)

[7] Cisternino, A., Gervasi, V.: Meta-programming without quasi-quotation. In: Pro-
ceedings of the 2nd MetaOCaml Workshop, Tallin, Estonia (september 2005)

[8] ECMA. Standard ECMA-334 – C# Language Specification. European Computer
Manufacturer Association, Geneva, 4th edition (2006)

[9] ECMA. Standard ECMA-335 – Common Language Infrastructure (CLI). Euro-
pean Computer Manufacturer Association, Geneva, 4th edition (2006)

[10] Ernst, M.D.: JSR 308: Annotations on Java types, 2007 (March 2008)
[11] Attardi, A.K.G., Cisternino, A.: CodeBricks: code fragments as building blocks.

SIGPLAN Notices 38(10), 306–314 (October 2003)
[12] Galilei, G.A.: Applicazioni delle annotazioni alla manipolazione a runtime di

codice su macchine virtuali. Master’s thesis, University of Pisa, in Italian (2007)
[13] Galilei, G.A.: Design and implementation of the @Java system. Technical Report

TR-08-19, Dipartimento di Informatica, University of Pisa (July 2008)
[14] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd

edn. Addison-Wesley, Reading (2005)
[15] Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.

Addison-Wesley, Reading (1999)
[16] Steele, G.L.: Common LISP – The language, 2nd edn. Digital Press (1990)
[17] Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-

tations. Theoretical Computer Science 248(1–2), 211–242 (2000)

http://at-java.sourceforge.net
http://jdasm.sourceforge.net
http://jdasm.sourceforge.net
http://jakarta.apache.org/bcel
http://logging.apache.org/log4j
http://www.csg.is.titech.ac.jp/~chiba/javaassist

Zero-Overhead Composable Aspects for .NET

Rasmus Johansen, Peter Sestoft, and Stephan Spangenberg

IT University of Copenhagen, Denmark
{johansen,sestoft,spangenberg}@itu.dk

Abstract. We present a new static aspect weaver for C#. The weaver,
which is called Yiihaw, works by transforming a program’s bytecode and
types, stored in so-called assemblies, and performs extensive checks at
weave-time to ensure correctness of the resulting woven assembly. The de-
sign makes four contributions: (a) Application of generic advice is type-
safe; (b) application of “around” advice incurs no runtime overhead; (c)
woven assemblies can be further woven; and (d) advice can itself be woven
before being applied to target code – in effect advice can be composed.
These contributions are achieved by minimal means, basing much of the
type checking on the bytecode’s generic type system. Yiihaw’s aspects are
less expressive than those of AspectJ: an aspect does not have an identity
of its own; only static join points are supported; and the pointcut language
does not allow logical combinations of join points. However, Yiihaw is suf-
ficiently expressive for many purposes, and for these purposes it provides
statically typesafe weaving and highly efficient woven code.

1 Introduction

This paper presents a new static aspect weaver for C# and other programming
languages based on Microsoft .NET, also known as the Common Language In-
frastructure (CLI). The weaver works by transforming CLI/.NET assemblies in
the form of .dll and .exe files and performs extensive checks at weave-time to
ensure the correctness, including static type correctness, of the resulting woven
assemblies. This aspect weaver, which is called Yiihaw, is intended to address
those applications of Aspect Oriented Programming (AOP) in which static type
safety and efficiency of the woven code is of paramount importance, and for
which some reduction in aspect expressiveness is acceptable.

The design and implementation of Yiihaw makes four contributions, all giving
significant practical advantages: (a) Application of generic advice is typesafe; (b)
application of “around” advice incurs no runtime overhead; (c) woven assemblies
can be further woven; and (d) advice can itself be woven before being applied
to target code – in effect advice can be composed.

These contributions are achieved by rather minimal means, where Microsoft’s
C# compiler and the type system of the CLI take care of most of the type
checking. In particular, contributions (a) and (b) rely on the generic methods of
the CLI bytecode. Hence it is unlikely that the same advantages can be as easily
achieved in aspect weavers for Java, because the Java Virtual Machine bytecode
does not include generic types.

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 185–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 R. Johansen, P. Sestoft and S. Spangenberg

In return for these advantages, Yiihaw imposes a number of restrictions: an
aspect does not have an identity or instance of its own; only join points that
can be evaluated statically are supported and hence no “cflow” advice; only ex-
ecution join points [22] are supported; and the pointcut language does not offer
logical combinations of join points. Hence Yiihaw’s aspects are considerably less
expressive than those of, say, AspectJ [22]. Also, advice supported by Yiihaw is
currently generic in the specific sense of parametric polymorphism in the tar-
get method’s return type, not the more general sense investigated by Kniesel
and Rho [23]. However, Yiihaw is sufficiently expressive for many purposes,
and for these purposes provides statically typesafe weaving and highly efficient
woven code.

For instance, in one application we decompose a collection library into a simple
core and a set of features (in the sense of additional functionality), and then use
Yiihaw to subsequently, and optionally, add those features again by weaving,
without loss of efficiency; see section 7.3. This permits strong modularization of
the collection library.

Another potential application is customization of a layered enterprise system,
where the ability to further-weave an already woven assembly (section 5), and
the ability to compose advice with advice (section 6), are useful.

Many current implementations of AOP for C# and Java use reflection, prox-
ies or similar auxiliary constructs to implement interceptions, which may cause
considerable runtime overhead compared to what could be achieved by “manual
weaving” of aspects. By contrast, AOP implementations for C and C++, such
as AspectC++ [35], generally favour efficiency over flexibility of the aspects.
Modern implementations of AspectJ avoid much of the runtime overhead too,
though not all [7,17].

Our aspect weaver for CLI/.NET uses inlining of bytecode instructions when
applying advice to a target assembly, and hence its goals and its way of working
are closer to those of weavers for C and C++ than to those of many weavers for
C# and Java. Bytecode inlining restricts the expressiveness of aspects, but avoids
many of the auxiliary constructs that other aspect weavers add to the woven
assemblies, such as assembly references, transformed copies of advice and target
methods, and “around” closures [17]. This means that the program structure
defined in the target assemblies is preserved by weaving.

Our current prototype supports various AOP constructs, such as introductions
and typestructure modifications. The weaver performs static typechecking on
all constructs and guarantees that only valid assemblies are generated, that is,
assemblies that are verifiable by the CLI/.NET bytecode loader. Empirical tests
show that the weaver prototype does not introduce any runtime overhead in the
generated assemblies, making it suitable for applying aspects in performance-
critical applications.

Yiihaw source code and its usage guide [21] can be downloaded at

http://yiihaw.tigris.org/

Zero-Overhead Composable Aspects for .NET 187

2 Introduction to Yiihaw

Yiihaw is an aspect weaver for CLI/.NET that statically applies aspects to CLI-
compatible assemblies.

2.1 An Example Weaving

First consider a simple use of the Yiihaw weaver. A target class Invoice, declared
in file LowerLayer.cs, has a method GrandTotal() that returns the invoice
grand total:

public class Invoice {
public virtual double GrandTotal() {
double total = ... computation ...;
return total;

}
}

Now we want to apply advice to this method so that it provides a 5 percent
discount if the grand total exceeds 10 000 Euros. Let this advice class be declared
in file Advice1.cs:

public class MyInvoiceAspect {
public double DoDiscountAspect() {
double total = JoinPointContext.Proceed<double>();
return total * (total < 10000 ? 1.0 : 0.95);

}
}

and let the pointcut file be this:

around * * double Invoice:GrandTotal()
do MyInvoiceAspect:DoDiscountAspect;

Next we use the C# compiler csc to compile the target class and the advice
class, and then invoke yiihaw to weave the advice into the target:

csc LowerLayer.cs
csc /r:YIIHAW.API.dll /t:library Advice1.cs
yiihaw pointcut1.txt LowerLayer.exe Advice1.dll

Note that the C# compiler separately typechecks the target and advice assem-
blies, and subsequently the weaver ensures that the advice method is applicable
around the target method. The resulting woven assembly LowerLayer.exe is en-
tirely equivalent to that which would be obtained by compiling this source code:

public class Invoice {
public virtual double GrandTotal() {
double total = ... computation ...;
return total * (total < 10000 ? 1.0 : 0.95);

}
}

188 R. Johansen, P. Sestoft and S. Spangenberg

In particular, there is no runtime overhead in the woven method relative to the
above hand-written method. The actual CLI/.NET bytecode of the GrandTotal
method, the DoDiscountAspectmethod and the woven method are shown below.

The Target Method GrandTotal
The target method code computes a double, stores it in local variable total at
offset 0 (using stloc.0), loads it again (using ldloc.0) and returns it:

.locals init ([0] float64 total)

... computation ...
stloc.0
ldloc.0
ret

The Advice Method DoDiscountAspect
The advice method DoDiscountAspect first calls Proceed and stores the re-
sult in the local variable total. Then total is loaded twice onto the stack by
ldloc.0; first for use in the multiplication and then for the comparison with
10 000 at the conditional branch instruction blt.s. The ldc.r8 instruction
pushes a double constant, and the mul instruction multiplies:

.locals init ([0] float64 total)
call ... JoinPointContext::Proceed<float64>()
stloc.0
ldloc.0
ldloc.0
ldc.r8 10000.
blt.s label
ldc.r8 0.95
br.s label2
label: ldc.r8 1.
label2: mul
ret

The Woven Method
In the woven method, instructions from the target and the advice method have
been merged, replacing the call to Proceed by the target method’s instructions.
Hence the woven method is completely self-contained; it does not use reflection
or proxies and does not call auxiliary methods:

.locals init ([0] float64 total,
[1] float64 V_1)

... computation ...
stloc.1
ldloc.1
stloc.0
ldloc.0
ldloc.0
ldc.r8 10000.

Zero-Overhead Composable Aspects for .NET 189

blt.s label
ldc.r8 0.95
br.s label2
label: ldc.r8 1.
label2: mul
ret

Also note that the ret instruction found in the original GrandTotal method has
been removed, so execution falls through to the first instruction of the advice
method, namely stloc.0. Similarily, local variable offsets have been updated
where necessary, so the bytecode instructions continue to refer to the correct
variables.

The woven method has the exact same name, signature, return type and
accessibility as the original target method. This ensures that callers of the target
method need not be modified or instrumented, and permits further weaving of
advice into the woven method; see section 5.

The main drawback of not using a proxy for the behaviour represented by
Proceed is that one must allow at most one occurrence of Proceed in the advice
method, or else risk a serious increase in code size. The main advantage of having
no proxies is that the structure of the code remains unchanged; further weaving
does not need to take proxy methods into account.

2.2 Interceptions

Yiihaw supports interception of all kinds of methods, regardless of their return
type, arguments, scope, and so on. Only “around” interception is supported, as
it generalizes “before” and “after” interception. Some aspect weavers support
“before” and “after” interception because they implement these with less run-
time overhead than “around” interception. Since Yiihaw implements “around”
interception without any runtime overhead, there is no performance reason to
support “before” and “after” interception. Yiihaw does not support “cflow” and
other dynamic forms of advice as supported by e.g. AspectJ.

2.3 Introductions

Yiihaw supports introduction of methods, properties, classes, struct types, fields,
enum types, delegate types and events into the target assembly. The body of an
advice method can refer to constructs that are being introduced into the target
assembly by the same weaving; in this case, Yiihaw will automatically update
these references so they refer to the corresponding constructs introduced within
the target assembly. For details, see section 4.7.

2.4 Modifications

Yiihaw supports modification of any class or struct type defined within the target
assembly, either by changing its basetype or by making it implement one or more
additional interfaces. In either case, Yiihaw will verify that all required abstract
methods, properties and events are implemented by the target class.

190 R. Johansen, P. Sestoft and S. Spangenberg

3 Generic Types in “Around” Advice

As can be seen from the preceding section, one goal of Yiihaw is to minimize
the runtime overhead introduced when applying advice to an assembly, and the
bytecode inlining approach guarantees that no auxiliary instructions, references
or other constructs are introduced by weaving.

Another goal of Yiihaw is to provide a familiar and efficient programming
model for advice code. Many existing aspect weavers provide a primitive advice
language that leads to wrapping and unwrapping overhead when implementing
even simple advice methods. In Yiihaw we want to avoid this.

3.1 Why Wrapping/Unwrapping Overhead?

To see why wrapping/unwrapping overhead occurs, consider the following ex-
ample written in the syntax of the AspectDNG [5] aspect weaver for CLI/.NET:

Object Advice(JoinPointContext jpc) {
double result = (double)jpc.Proceed();
return result + 2.0;

}

In AspectJ for Java, and in AspectDNG and most other CLI/.NET weavers,
the Proceed method has return type Object. The reason is that different tar-
get methods may have different return types, and obviously the advice language
should support interception of all types of target methods. Type Object is used
by AspectDNG as a placeholder for all types. If the user wishes to alter or use the
returned value in the advice method, he must typecast the result from Proceed,
which incurs runtime overhead. Furthermore, when returning a CLI/.NET value
type such as double in the example above, boxing occurs: the value must be
wrapped as a reference type and allocated in the runtime heap. These problems
(or similar ones) exist in almost all current aspect weavers for CLI/.NET. How-
ever, the AspectC++ [35] weaver for C++ avoids much overhead and in general
is closer to our goals for Yiihaw; see section 7.4.

3.2 The Proceed Method

We propose a simple solution to these problems using the generic types of
CLI/.NET, which eliminates the need for boxing, typecasting and unboxing.
The signature of Yiihaw’s Proceed method for use in advice methods is this:

public T Proceed<T>();

The Proceed method takes a type parameter T. Advice code specifies the target
method’s return type by instantiating this type parameter, and hence avoids
typecasts on the return value:

public double Advice() {
return JoinPointContext.Proceed<double>();

}

Zero-Overhead Composable Aspects for .NET 191

Moreover, the Yiihaw weaver will check that the return type specified as an
argument to Proceed equals the target method’s return type. Two advantages
are obtained. First (a) advice is strongly typed, because the C# compiler will
check the advice method’s use of the value returned by the Proceed method,
before applying the advice, and Yiihaw verifies that the specified return type
equals the return type of the intercepted methods. Secondly (b) after these
compile-time and weave-time checks, it is unnecessary to insert any run-time
boxing, typecast or unboxing operations, so no runtime overhead is incurred.
This would be impossible to achieve if a too general return type were used on
the advice method, such as Object in AspectDNG.

Using or Modifying the Value Returned. Yiihaw allows the advice code to
use and modify the value returned from the Proceed method in any conceivable
way that agrees with its stated type:

public double Advice() {
return JoinPointContext.Proceed<double>() + 2.0;

}

The advice code can even replace the target method completely with a new
implementation by not invoking Proceed at all:

public double Advice() {
...
return 3.0;

}

In this case, Yiihaw will make sure that no instruction or variable defined in
the original target method is retained in the generated assembly. The “call” to
Proceed can also appear in a conditional, a loop, a try-catch block and so on,
but there can be at most one call to Proceed in the advice method source code.
This restriction is imposed only to rule out the explosion in code size that could
otherwise result from bytecode inlining.

3.3 Generic Advice Methods

Now one might think that the type argument T in Proceed<T>() means that
a given advice method Advice() can be applied only to a single type of tar-
get method. It turns out that we can again use generic types to overcome this
apparent limitation.

Namely, we can make the advice method itself generic by giving it a type
parameter T, to obtain T Advice<T>(...) where its return type equals its type
parameter T. In this case Yiihaw will allow it to be applied to a target method
with any return type, and indeed to any number of target methods with any
number of different return types.

192 R. Johansen, P. Sestoft and S. Spangenberg

Consider the following generic advice:

public static T Advice<T>() {
T result = JoinPointContext.Proceed<T>();
...
return result;

}

We can think of the type parameter T of Advice<T> as representing “any type”.
At weave-time, Yiihaw will replace T with the actual return type of the target
method being intercepted. This means that the woven method has the exact
same return type as the original target method, which helps support further
weaving of woven assemblies as well as composition of advice; see sections 5
and 6. For details about replacement of generic variables, see section 4.3.

3.4 Bounded Generic Advice

If the return type of an advice method T Advice<T>(...) is the same as the
generic type parameter T of the method, it is essentially completely abstract,
and there is very little the advice method can do with the returned value.
More precisely, the effective base class [13] of the return type is Object, so it
is known only to implement methods such as Equals(Object), GetHashCode()
and ToString() that are supported by all CLI/.NET types.

In CLI/.NET and its languages, such as C#, a type parameter can be con-
strained to implement particular interfaces. This can be used in connection with
generic advice methods to (i) tell the advice method what can be done with
the return value, and (ii) limit the application of the advice to only such target
methods whose return type implements the same interfaces.

3.5 Using the Receiver Object

Like most aspect weavers, Yiihaw supports getting and using the receiver object,
that is, the object enclosing the method being intercepted (for non-static target
methods). This is done using the GetTarget method of the Yiihaw API, which
has the following signature:

public T GetTarget<T>();

This method uses the same principle as Proceed: The user is forced to specify
the actual type T of the value he expects GetTarget<T> to return. At weave-time
Yiihaw will verify that this type corresponds to the actual type being intercepted.

Consider the following example:

public static T Advice<T>() {
...
TargetClass tgt;
tgt = JoinPointContext.GetTarget<TargetClass>();
tgt.SomeMethod();
return JoinPointContext.Proceed<T>();

}

Zero-Overhead Composable Aspects for .NET 193

The GetTarget method is invoked with type parameter TargetClass, assumed
to exist within the target assembly. As GetTarget returns a value of this type, no
typecasting or boxing is needed. When applying this advice, Yiihaw will verify
at weave-time that (1) the target method is non-static and (2a) that the receiver
is actually of type TargetClass or (2b) TargetClass is Object and the receiver
has reference type, and hence can be cast to Object without boxing.

3.6 Example: Universal and Statically Typesafe Synchronization

Using GetTarget<Object> and the generic Proceed<T> method (section 3.3),
one can write a completely generic, yet statically typesafe, aspect for synchro-
nization or locking. For instance, consider a class Out with instance methods for
writing output, for counting the number of bytes written, and the like:

class Out {
void WriteByte(byte b) { ... }
void WriteInt(int i) { ... }
void WriteChar(char c) { ... }
int BytesWritten() { ... }

}

It seems sensible to add synchronization as an aspect, by wrapping the C#
statement lock(this){...} around the body of each method. With Yiihaw,
universal synchronization advice can be expressed like this:

class AspectConstructs {
T SyncAspect<T>() {
lock (JoinPointContext.GetTarget<Object>()) {

return JoinPointContext.Proceed<T>();
}

}
}

This advice can be applied, in a statically typesafe way, to any instance method
on any reference type. In AspectJ for Java 5.0, such universal locking advice ap-
parently cannot be written in a statically typesafe way according to Jagadeesan
et al. [18]. Also, note that the restriction to receivers of reference types is nat-
ural and essential. In C#, receiver-based locking is meaningless for value types,
because the receiver would be boxed anew in every execution of lock(this), so
locking would always succeed.

The C# compiler expands the lock statement to a try-finally block with
calls to entry and exit methods from a monitor library, and the Yiihaw weaver
then inlines each target method into such a try-finally clause.

3.7 The Applicability of Advice

The rules for applying an advice method to target methods are as follows:

1. A non-static advice method can only be used for intercepting non-static tar-
get methods, because it can refer to the target method’s receiver reference

194 R. Johansen, P. Sestoft and S. Spangenberg

this. A static advice method can be used for intercepting both static and
non-static advice methods, because it cannot refer to the target’s this.

2. The sequence of parameter types of the advice method must be a prefix of
the sequence of parameter types of the target method. This implies that
the target method must take at least the same number of parameters as
the advice method, and all parameter types must match those of the advice
method.

3. The return type of the advice method must equal the return type of the
target method. Alternatively, the advice method may use a generic return
type, see section 3.3, or Object in case the target method’s return type is a
reference type.

Yiihaw will enforce these rules at weave-time.

4 Yiihaw Implementation

Yiihaw is implemented using the Cecil bytecode manipulation library [9]. Cecil
was chosen as it is simple and efficient and supports the low-level operations
needed for merging bytecode instructions.

4.1 Assembly Rewriting

Invoking Yiihaw requires that the user specifies (i) a valid pointcut file as a text
file, (ii) an existing target assembly to which the aspects should be applied, and
(iii) an existing aspect assembly containing advice and other constructs that
should be introduced.

The resulting woven assembly is of the same kind — exe, winexe, library or
module — as the target assembly. The woven assembly will be completely self-
contained; it does not depend on the aspect assembly.

4.2 Handling Interceptions

The weaver applies the advice to one target method at a time. Multiple advice
may be applied to the same target method, if specified by the pointcut file; the
advice will be applied in the order specified. Hence the application of advice
by Yiihaw can be seen as a transformation of the (bytecode of) target methods
and target types. This transformation is static, performed after compilation but
before loading the compiled bytecode. The strengths (type safety, efficiency)
and limitations (aspects do not have identity, no dynamic join points) of Yiihaw
derive from this staticness. Moreover, such transformations are composable as
we shall see in section 6.

The rest of this section describes the approach used for applying advice to a
single target method. This approach is repeated for each interception statement
in the pointcut file and for each target method.

Zero-Overhead Composable Aspects for .NET 195

Merging the Target and Advice. Prior to performing any merging of the
advice and the target method, a copy of all instructions of the target method
is created. For the sake of discussion, we refer to this copy as the original body
throughout this section. If the advice contains no call to the Proceed method,
then the original target method will be ignored, as explained in section 3.2.

The weaver therefore cannot assume that the original implementation should
always be kept available. Creating a copy of the body of the target method allows
subsequent deletion of some or all instructions in the target method. This way,
all instructions of the advice method can just be copied one by one to the woven
method without considering whether they fit into any existing method body.
Whenever a call to Proceed is encountered in the advice, the weaver simply
copies all instructions from the original body into the woven method. This will
be elaborated upon later in this section.

Local Variable Renumbering. Before the original body is inserted into the
target method, all references to local variables are updated to make sure that
they refer to the correct local variable. This is necessary because local variables
of the advice method are prepended to the local variables of the original target
method.

Handling Return Instructions. When inserting the original body the weaver
also replaces all ret (return) instructions with br (unconditional branch) in-
structions that jump to a fresh label. This is necessary to maintain the correct
control flow; a ret instruction would prematurely terminate the woven method.

Consider the following target method bytecode:

ldarg.1
ldc.i4.5
ble.s label
ldarg.1
ldc.i4.2
mul
ret
label: ldarg.1
ret

which corresponds to this C# source method:

int M(int x) { if (x > 5) return x * 2; else return x; }

Further, suppose we want to apply the following advice to that method:

call int YIIHAW.API.JoinPointContext::Proceed<int>()
stloc.0
ldstr "advice"
call void [mscorlib]System.Console::Write(string)
ldloc.0
ret

196 R. Johansen, P. Sestoft and S. Spangenberg

This advice bytecode calls Proceed and then prints the string "advice" and
returns the original return value. It might be written like this in C#:

int Advice() {
int res = JoinPointContext.Proceed<int>();
Console.Write("advice");
return res;

}

During weaving, the call to Proceed in the latter bytecode fragment must be
replaced by all instructions from the target method, from the former bytecode
fragment. Doing this naively would produce this wrong woven result:

ldarg.1 // From target
ldc.i4.5 // From target
ble.s label // From target
ldarg.1 // From target
ldc.i4.2 // From target
mul // From target
ret // From target
label: ldarg.1 // From target
ret // From target
stloc.0 // From advice henceforth
ldstr "advice"
call void [mscorlib]System.Console::Write(string)
ldloc.0
ret

When executing this method, the advice starting with the stloc.0 instruction
would never be reached, because the method would return as soon as it reached
either of the ret instructions from the target method (instructions number 7
and 9).

Yiihaw therefore replaces any ret instruction with an unconditional branch
to a fresh label, just after the last instruction of the target method:

ldarg.1
ldc.i4.5
ble.s label
ldarg.1
ldc.i4.2
mul
br.s label2 // <-- replaces ret instruction
label: ldarg.1 // <-- fallthrough instead of ret
label2: stloc.0
ldstr "advice"
call void [mscorlib]System.Console::Write(string)
ldloc.0
ret

This maintains the expected control flow. As a small optimization, if the last
instruction of the target method is ret, Yiihaw will just delete it so that control

Zero-Overhead Composable Aspects for .NET 197

falls through to the advice method’s code. This explains why the second ret
instruction from the target method is not replaced in the woven method shown
above.

Verifiability of the Generated Bytecode. The procedure described above
will produce verifiable bytecode. To see why, consider a given non-void target
method R M(...), with concrete return type R. Whenever execution of the target
method reaches an exit point, represented by a ret instruction, the stack contains
a value of type R and nothing else [14, I.12.4]; the net effect of executing the target
method’s body is to push its return value on the stack before reaching ret. Since
each ret is replaced with a jump br to the first instruction Presume following
the call to Proceed, this means that when Presume is reached in the woven
method, the stack top holds a value of type R on top of any contents that was
already there before executing the code inserted from the target method instead
of Proceed<R>(). This relies on Yiihaw’s weave-time check, prior to applying
any advice, that the type R expected by the advice code is compatible with the
return type of the target method. This applies to generic advice methods and
target methods of type void as well, as we shall see in the next section.

4.3 Replacing Generic Variables during Weaving

Recall from section 3.3 that when applying generic advice, Yiihaw will change
the type of a variable that stores the result of Proceed. Consider again this
generic advice method from section 3.3:

public static T Advice<T>() {
T result = JoinPointContext.Proceed<T>();
...
return result;

}

At weave-time, Yiihaw will replace T with the actual return type of the method
being intercepted. Consider a target method with return type int:

public int Target() {
...

}

Yiihaw will modify the variable result from type T to int. Hence, the type
parameter T will only exist in the advice, not in the woven methods.

When intercepting methods that return void one should not attempt to mod-
ify the type of the variable storing the result from Proceed, as the variable will
contain no value and void is not a legal CLI/.NET type for local variables.
In this case, Yiihaw will instead remove the variable altogether along with any
instructions that refer to it (such as ldloc and stloc instructions).

Verifiability of the Generated Bytecode. Replacing the generic type pa-
rameter with the actual return type of the target method produces CLS-compliant

198 R. Johansen, P. Sestoft and S. Spangenberg

bytecode. Consider any non-void target method R M(...), which returns con-
crete type R: When reaching the point Presume (as defined in section 4.2), we
know that a value of type R is on top of the stack. Since the stloc instruction
following the call to Proceed stores this value in the local variable, it is safe to
modify that variable to have type R, because that is the type of the value on top
of the stack.

For a void target method void M(...), Yiihaw removes the local variable
along with any ldloc or stloc instructions that refer to it. Since the target
method obviously does not return anything, the net effect of the original body
is to not place any return value on top of the stack, and there will be no value
to load and store. Removing the ldloc and stloc instructions means that no
value will exist on the stack at the time a ret instruction is reached, which is
just what is intended when intercepting methods of type void.

4.4 Updating Code and Variable References

When all instructions have been transferred to the woven method, the weaver
scans all of these instructions, looking for dangling code addresses and unopti-
mized instructions. A dangling code address might occur if an instruction refers
to another instruction that has been removed. For instance, instructions that
load or store the return value are either modified or removed by the weaver, as
described above. If a reference exists to such an instruction it will be invalid
at this point. The weaver updates all such references using a mapping table
that is built and maintained as instructions get replaced or removed during the
weaving. Also, for optimization purposes the weaver checks each instruction to
see whether modifying it to a short-form instruction is possible, for instance to
modify ldloc to the shorter ldloc.s.

4.5 Handling GetTarget during Weaving

The GetTarget method can be used to get the target method’s receiver object,
as described in section 3.5. Consider again this example from section 3.5:

public static T Advice<T>() {
...
TargetClass tgt;
tgt = JoinPointContext.GetTarget<TargetClass>();
tgt.SomeMethod();
return JoinPointContext.Proceed<T>();

}

At weave-time, Yiihaw will verify that the type argument TargetClass is com-
patible with the target method’s receiver type. If so, the call to the GetTarget
method will simply be replaced by a ldarg.0 instruction which loads the target
method’s this reference. This is possible because the instructions from the ad-
vice method and target method are merged, which implies that SomeMethod can
now be invoked directly on the receiver. Hence, no typecasts, proxies or reflexive
calls are introduced for this purpose.

Zero-Overhead Composable Aspects for .NET 199

4.6 The Join Point API

Besides the Proceed and GetTarget methods, which we have already described,
the Yiihaw API contains several properties that can be invoked from an advice
method. These are summarized in table 1.

Table 1. The Yiihaw API’s methods and properties. The type Type below is Sys-
tem.Type from the CLI/.NET Framework Class library.

Property/method Type Value

AccessSpecifier string Access specifier(s) of the intercepted method
DeclaringType Type Declaring type of the intercepted method
DeclaringTypeAsString string Name of the declaring type of the intercepted method
GetTarget〈T〉 T Target method’s receiver: its this reference
IsStatic bool True if the target method is static, else false
Name string Name of the target method
ParameterNames string[] Parameter names of the intercepted method
ParameterTypes Type[] Parameter types of the intercepted method
Proceed〈T〉 T Execute the intercepted method and get its value
ReturnType Type Return type of the intercepted method
ReturnTypeAsString string Name of the return type of the intercepted method
Signature string Signature of the intercepted method

All calls to these methods or properties are determined and replaced at weave-
time. Consider the following advice, which prints the signature of the target
method:

public static T Advice<T>() {
Console.WriteLine(JoinPointContext.Signature);
return JoinPointContext.Proceed<T>();

}

Yiihaw will replace the call to the Signature property with a ldstr instruction,
such as this:

ldstr "Foo(int x, double y, string z)"

Similar transformations are performed for all other properties. Hence, using the
Yiihaw API does not introduce any runtime overhead in the woven assembly.
In particular, the API is not linked in and does not contribute to the size or
runtime footprint of the woven code.

4.7 Weave-Time Checks

The following checks are performed at weave-time by Yiihaw:

1. If any target construct (such as a method that should be introduced) cannot
be found, the weaving is aborted.

200 R. Johansen, P. Sestoft and S. Spangenberg

2. If an advice method contains more than one call to Proceed, the weaving is
aborted.

3. In a call to Proceed<TA> where the type argument TA is not a generic pa-
rameter of the enclosing advice method, TA must equal the target method’s
return type.

4. When implementing interfaces or changing the basetype, Yiihaw will verify
that (i) all required abstract methods, properties and events are already im-
plemented by the target class or (ii) that implementations of these methods
are being introduced in the same weaving.

5. When an advice method is generic, its type parameter T can be used only
as the type argument of Proceed, as the type of local variables, and in the
expressions default(T) and typeof(T). Any other use of T will be rejected
by Yiihaw, as T is only used as a substitute for the actual return type and
only exists in the advice method.

6. When introducing types, Yiihaw will verify that any assemblies referenced by
the aspect assembly are also referenced by the generated assembly, if needed.
However, Yiihaw will never make the generated assembly refer to the aspect
assembly, only to other assemblies referred by the aspect assembly.

7. If advice is applied to a target method and that advice refers to another
construct in the aspect assembly (such as a field), then that construct must
be inserted into the target assembly as well. Yiihaw will require that the
construct is inserted. Furthermore, Yiihaw updates that reference so that it
refers to the “new” copy inserted into the generated assembly, not to the
“old” construct in the aspect assembly. For instance, when introducing this
class into the woven assembly:

namespace Aspects {
public class Foo {

...
}

}

Yiihaw will update the CLI/.NET reference from Aspects.Foo to Foo in the
target namespace.

Some of these checks, such as rule (3) on Proceed<TA>, could be relaxed to admit
certain subtypes of TA without compromising correctness of the woven assembly.
See section 10 on future work.

4.8 Properties of the Woven Result

The assembly resulting from the weaving process has several noteworthy prop-
erties:

– The woven method that results from weaving advice into a target method
has the exact same signature — name, argument types, and result type

Zero-Overhead Composable Aspects for .NET 201

— as the original target method. In particular, no name mangling occurs,
no wrapper methods are generated, and the return type does not change
(section 3). This property enables further weaving of a woven assembly, and
further weaving can be done in the exact same way as any other weaving.
Moreover, it enables weaving of advice into an advice method before it in
turn is woven into a target method; see section 6.

– Inserted fields have the same type and name they had in the advice assembly.
Again, there is no name mangling of fields, and no need to represent fields
as properties or similar.

– Applying “around” advice to a target does not introduce any runtime casts
or any overhead in order to wrap value type results as objects.

5 Further Weaving: Advising Woven Code

Since the result of weaving is an ordinary assembly, an already-woven assembly
can be further woven, as shown in figure 1 (a). For a concrete example, consider
the woven invoice assembly from section 2.1 and assume that we want to advise
it so that when the customer is a charity it returns a grand total of 0 Euros, but
adds the grand total to a running sum of tax-deductible gifts. The advice class
might look like this, in file Advice3.cs:

Target

YiihawAdvice 1

YiihawAdvice 2

T+A1+A2

T+A1

Advice 1

Yiihaw

Target

Yiihaw

T+A1+A2

A1+A2

Advice 2

(a) Further weaving (b) Advice composition

Fig. 1. (a) Further weaving, where Advice 1 is first woven into Target, giving the
assembly T+A1, then Advice 2 is woven into that assembly. (b) Advice composition,
where Advice 2 is first woven into Advice 1, giving assembly A1+A2, then that assembly
is woven into Target. Given appropriate pointcut files, the final woven result is the same
in both cases.

202 R. Johansen, P. Sestoft and S. Spangenberg

public class MyNewInvoiceAspect {
private bool noncharity;
private double deductible;

public double CharityAspect() {
double total = JoinPointContext.Proceed<double>();
if (!noncharity) {

deductible += total;
Console.WriteLine("Deducing {0:F2}", total);
total = 0;

}
return total;

}
}

and the pointcut file then says to insert the noncharity and deductible fields
into the target assembly (which is the already-woven assembly from section 2.1):

insert field private instance bool
MyNewInvoiceAspect:noncharity into Invoice;

insert field private instance double
MyNewInvoiceAspect:deductible into Invoice;

around * * double Invoice:GrandTotal()
do MyNewInvoiceAspect:CharityAspect;

The necessary compilation and weaving commands are:

csc /r:YIIHAW.API.dll /t:library Advice3.cs
yiihaw pointcut2.txt LowerLayer.exe Advice3.dll

The result is a new assembly LowerLayer.exe, which is equivalent to one that
would be obtained by compiling this source code:

public class Invoice {
private bool noncharity;
private double deductible;
public virtual double GrandTotal() {
double total = ... computation ...;
total = total * (total < 10000 ? 1.0 : 0.95);
if (!noncharity) {

deductible += total;
Console.WriteLine("Deducing {0:F2}", total);
total = 0;

}
return total;

}
}

6 Advice Composition: Advising Advice

Since advice is represented by an assembly, and Yiihaw works by weaving assem-
blies, Yiihaw can apply advice to advice; see figure 1 (b). With an appropriate

Zero-Overhead Composable Aspects for .NET 203

pointcut file, this amounts to composition of advice, in a disciplined manner as
also proposed, but apparently not implemented for aspects, by Lopez-Herrejon,
Batory and Lengauer [28].

The double weaving

t
a−→ a(t) b−→ b(a(t))

can instead be realized by advising the advice

a
b−→ b(a)

and then applying the composed advice to the target:

t
b(a)−→ (b(a))(t)

The latter approach may have several advantages: It gives early checking of the
advice composition, it speeds up advice application when advice a and b must be
applied to many target assemblies, it is easier to distribute and apply one piece
of advice than multiple pieces of advice, and it makes for conceptual neatness
and closure.

For a concrete example, we now show that the two-step weaving of the Invoice
class shown in sections 2.1 and 5 can be achieved in a different way. First we
weave the two advice assemblies together, then we apply the composite advice
to the target Invoice class.

In the first step we now use this pointcut file:

insert field private instance bool
MyNewInvoiceAspect:noncharity into MyInvoiceAspect;

insert field private instance decimal
MyNewInvoiceAspect:deductible into MyInvoiceAspect;

around * * decimal MyInvoiceAspect:DoDiscountAspect()
do MyNewInvoiceAspect:CharityAspect;

and these compilation and weaving steps, which advise the target Advice1.dll
with advice Advice3.dll:

csc /r:YIIHAW.API.dll /t:library Advice1.cs
csc /r:YIIHAW.API.dll /t:library Advice3.cs
yiihaw pointcut3.txt Advice1.dll Advice3.dll

The result is a woven version of Advice1.dll which represents the composition
of the two advice classes. In the second step we can now apply this composite
advice to the Invoice target class (section 2.1), using this pointcut file:

insert field private instance bool
MyInvoiceAspect:noncharity into Invoice;

insert field private instance decimal
MyInvoiceAspect:deductible into Invoice;

around * * decimal Invoice:GrandTotal()
do MyInvoiceAspect:DoDiscountAspect;

204 R. Johansen, P. Sestoft and S. Spangenberg

and these compilation and weaving commands:

csc LowerLayer.cs
yiihaw pointcut4.txt LowerLayer.exe Advice1.dll

The resulting woven assembly LowerLayer.exe is identical to that obtained by
further-weaving in section 5.

7 Evaluation and Applications

Here we discuss two potential applications of Yiihaw, show that it introduces no
runtime overhead for generic “around” advice, and compare its capabilities with
other aspect weavers for .NET.

7.1 Generating Customized Collection Libraries

The C5 collection library provides generic collection classes for C# and other
CLI languages [24]. The library includes the core functionality usually found in
a collection library (lists, sets, bags, and so on), but it also provides many extra
features, such as support for update events and fail-early enumerations, slidable
updateable list views, hash indexes on arraylists and linked lists, and much more.
While these extra features will be useful in some scenarios, in other scenarios
they will just waste space and time.

By implementing a generator that can build specialized versions of the library,
it would be possible to create versions of the library containing only the features
actually needed in a given context [19]. The idea is to make a base library that
contains only the core functionality, and then generate customized versions by
adding features to the base library.

Having defined the base library (with the core functionality), and the extra
features represented as advice and aspects, the generator can build a pointcut
file based on the selections made by the user. Yiihaw can then weave the desired
features into the base library. As Yiihaw uses inlining, the generated library will
correspond, in structure and runtime efficiency, to hand-specialized versions of
the library.

This vision has been implemented [20] for a small subset of the C5 collection
library. The base library implements linked lists and array lists without update
events and fail-early enumerations. Here is an outline of the linked list class,
where the methods Add, Remove, RemoveAt and the this set accessor perform
updates:

public class LinkedList : IList {
internal int size;
public Node first, last;
public class Node { ... }
public int Count { get { ... } }
public Object this[int index] { set { ... } }
public bool Add(int i, Object item) { ... }

Zero-Overhead Composable Aspects for .NET 205

public Object Remove() { ... }
public object RemoveAt(int i) { ... }
public bool Contains(Object item) { ... }

}

The implementation of the event aspect consists of an event handler field, a
generic advice method AddCallToOnChanged<T> to apply around all update
methods, and an auxiliary method to raise the event, if any event handler has
been added:

class EventConstructs {
public event EventHandler changed;
public T AddCallToOnChanged<T>() {
OnChanged(System.EventArgs.Empty);
return JoinPointContext.Proceed<T>();

}
public void OnChanged(System.EventArgs e) {
if (changed != null)

changed (this, e);
}

}

The event field and the auxiliary method are inserted into the linked list class
and the array list class using these pointcut statements:

insert event public * EventHandler EventConstructs:changed
into Collections.LinkedList;

insert event public * EventHandler EventConstructs:changed
into Collections.ArrayList;

insert method public instance void EventConstructs:OnChanged(EventArgs)
into Collections.LinkedList;

insert method public instance void EventConstructs:OnChanged(EventArgs)
into Collections.ArrayList;

The event advice method AddCallToOnChanged<T> is wrapped around the four
update methods of the two list classes using these pointcut statements:

around public * * Collections.*:Add(int,object)
do EventConstructs:AddCallToOnChanged;

around public * * Collections.*:Remove(object)
do EventConstructs:AddCallToOnChanged;

around public * * Collections.*:RemoveAt(int)
do EventConstructs:AddCallToOnChanged;

around public * * Collections.*:set_Item(*)
do EventConstructs:AddCallToOnChanged;

The other feature, fail-early enumerations, can be added in the form of an aspect
that inserts an update stamp instance field into each collection class, wraps an
update stamp increment around each update method, and inserts a method that
returns an enumerator. (The stamp is required for the enumerator to throw an

206 R. Johansen, P. Sestoft and S. Spangenberg

exception if an update method is called while the enumerator is being used).
This aspect can be applied either before or after the above-mentioned update
event aspect.

Inspection shows that Yiihaw produces the same bytecode as one would have
expected by adding these features to the corresponding collection classes by
hand. Also, measurements confirm that Yiihaw introduces no runtime overhead;
see section 7.3.

7.2 Customization of a Layered ERP System

In a companion paper [33] in this volume, we consider the use of static aspects
for customization of enterprise systems, such as Microsoft Dynamics AX [11].

7.3 Performance of Woven Code

A prominent design goal for Yiihaw was that aspects should incur no runtime
overhead in woven code. This goal has been achieved as evidenced both by
microbenchmarks and by the case study discussed in section 7.1.

For one microbenchmark, consider a target class with a simple method that
takes two double arguments and returns a double:

class Target {
public double Linear(double x, double y) {
return x + 0.01 * y;

}
}

Now let us advise it with a generic advice method that simply counts the number
of calls:

public class CountAdvice {
private int count;
public R CountCall<R>() {
count++;
return JoinPointContext.Proceed<R>();

}
}

Using a pointcut file that inserts the count field into class Target, and intercepts
method Linear by wrapping CountCall around it, one obtains a woven class
equivalent to this handwoven class:

class Handwoven {
private int count;
public double Linear(double x, double y) {
count++;
return x + 0.01 * y;

}
}

Zero-Overhead Composable Aspects for .NET 207

Table 2. Performing 2 billion calls to method Linear

Runtime (s) Per call (ns)
Target before weaving 10.56 5.28
Target after weaving 10.77 5.38
Handwoven 10.84 5.42

Table 2 shows the execution time for 2 billion calls to the original method, to
the method woven by Yiihaw, and to the handwoven method shown above. Each
time measure is the average of 7 runs on a 1.6 GHz Pentium M processor and
Microsoft .NET 3.5 beta.

Clearly no runtime overhead at all is incurred by weaving the count++ state-
ment into method Linear. In fact, inspection of the bytecode generated by
weaving shows it to be identical to that compiled from Handwoven.

For a more substantial benchmark, consider the generation of customized
collection libraries discussed in section 7.1. We studied the performance of a
library obtained by adding update events and fail-early enumerations as aspects
to a core implementation of array lists and linked lists, and compared the results
to a handwritten library with those features [20, chapter 11]; see table 2. As
can be seen, also in this more substantial benchmark, the weaving by Yiihaw
introduces no overhead at all.

Table 3. Performance of three implementations of a collection library with update
events and fail-early enumerations. Execution time in milliseconds.

How implemented Events Enumeration
Handwritten 8547 602
Woven by Yiihaw 8545 600
Woven by AspectDNG 13941 30247

7.4 Related Work: Other Aspect Weavers

Yiihaw is far from the only aspect weaver to use bytecode rewriting to implement
interception. In particular, the AspectJ implementations ajc [17] and abc [7]
use bytecode rewriting to implement “around” advice in many cases. They still
seem to incur boxing and unboxing overhead when calling Proceed on target
methods with primitive return type, although the exact circumstances are not
so clear [7, §3.3].

What we believe is particular to Yiihaw is that it achieves type safety of
generic advice application and efficiency of the woven code by rather simple
means, relying on the generically typed bytecode of CLI/.NET. The resulting
predictably of the results and the implementational and conceptual simplicity
come at a cost, which is limited expressiveness relative to many other aspect
weavers. Nevertheless, Yiihaw fits an interesting and non-empty niche of appli-
cations.

208 R. Johansen, P. Sestoft and S. Spangenberg

Table 4. Comparison of available weavers for .NET. The Around column indicates
whether “around” advice incurs extra method calls, argument marshalling, or reflec-
tion overhead. The Proceed column indicates whether the use of Proceed in generic
“around” advice incurs overhead such as boxing, casting and unboxing for primitive
values. Notes: Aspect.NET has no Proceed but a RetValue property of type Object.
Wicca Phx.Morph binary weaving does not support “around”, only “before” and “af-
ter” advice; the only overhead incurred by before seems to be a method call and
parameter passing. It is plausible that Wicca Phx.Morph can support aspect composi-
tion but we have found no explicit mention or evidence of this.

Advice Further
Name Pointcuts Around Proceed weavable weavable Ref.
AspectDNG Static Overhead Overhead No Yes [5]
Aspect.NET Static Overhead Overhead No Yes [6,32]
Aspect# Dynamic Overhead Overhead No No [4]
DotSpect Static Overhead (No Proceed) No No [10]
EOS Dynamic Overhead Overhead No No [15]
NKalore Static Overhead Overhead No No [29]
PostSharp LAOS Static Overhead Overhead No Yes [30]
Rapier LOOM Dynamic Overhead Overhead No Yes [27]
Wicca Phx.Morph Static (No around) (No Proceed) No? Yes [38]
Yiihaw Static No overhead No overhead Yes Yes [20,39]

Table 4 compares several features of known weavers for CLI/.NET and shows
that only Yiihaw offers generic “around” advice without boxing, casting and
unboxing overhead. Also, Yiihaw is the only one known to support both ad-
vice composition (that is, pre-weaving of advice) and further-weaving of already
woven assemblies.

In addition to the .NET weavers listed, we are aware of AOP.NET [1], Gripper-
LOOM.NET [27], Setpoint [34] and Weave.NET [37], but these seem to be either
unavailable for experimentation or no longer maintained, which makes it difficult
or unfair to assess their capabilities.

Yiihaw admits only static pointcuts, not “cflow” and similar, and its design
goals and achievements appear more closely related to those of AspectC++ [35]
than to most Java aspect weavers such as AspectJ. In fact, for static point-
cuts Yiihaw seems to incur even less overhead than AspectC++ because some
shortcomings in current C++ compilers slightly impair the performance of As-
pectC++ [26].

AspectC++ seems to support typesafe application of generic “around” advice
and to avoid overhead when primitive type values are returned [25]. To our
knowledge no Java aspect weaver has this property, and no C# aspect weaver
has it except for the Yiihaw weaver presented in this paper.

Unlike Yiihaw, AspectC++ does not seem able to perform advice composition
by weaving, because AspectC++ weaving implies a relatively radical transfor-
mation of the target program.

Ways to control dynamic advice composition, in which advice may advise
itself, have been studied and implemented in the AspectJ* weaver [8]. Apel and

Zero-Overhead Composable Aspects for .NET 209

others [2] investigate the relation between aspect refinement, mixins and feature-
oriented programming.

8 Current Limitations of the Yiihaw Weaver

There are some limitations in the current version of Yiihaw that we may want
to lift in a future version.

8.1 Yiihaw Does Not Support Aspect Instances

In Yiihaw, an aspect does not have its own state, neither as a singleton (per
aspect declaration) nor per target, unlike in AspectJ and related systems.

8.2 No Dynamic Join Points

Yiihaw does not support join points, such as “cflow”, where advice is applied
only if a particular method has been called and has not yet returned. Dynamic
join points are clearly more expressive, and useful in some applications, but
we have not yet encountered a need for them in our motivating application:
collection library specialization. Also, they pose interesting implementation and
optimization challenges that we would rather avoid; we would prefer to statically
ensure that no runtime overhead (in time or space) is imposed, even at the cost
of limited expressiveness. The purpose of a collection library is to achieve high
performance, and we want to avoid any too-general mechanism that imposes
runtime overhead.

Although Yiihaw does adhere to the motto “aspect-oriented programming is
quantification and obliviousness” [16], the quantification permitted by Yiihaw
pointcuts is rather limited. Hence one might question whether Yiihaw can be
considered an aspect weaver at all, or whether it should be seen as a tool for
bytecode-level composition of mixins or roles; for a conceptual clarification see
Apel et al. [3].

8.3 Only Method Execution Pointcuts

Yiihaw supports interception by method execution pointcuts and constructor
execution pointcuts, but not advice around read access or write access to fields.
The latter could be implemented by bytecode weaving of the assemblies in which
the accesses occur, but would require access to all assemblies that use the advised
fields, which is undesirable.

Note that C# properties P and indexers this[] can be advised, by targeting
the methods get_P, set_P, get_Item and set_Item to which they are compiled.

8.4 Limited Pointcut Language

The pointcut language currently can express only pointcut literals, not logical
combinations such as intersection (“and”), union (“or”) or complement (“not”)
of pointcuts.

210 R. Johansen, P. Sestoft and S. Spangenberg

8.5 No Instances of Generic Advice Classes

While Yiihaw can weave generic advice methods into a target as shown in sec-
tion 3, it cannot weave particular type instances of generic advice classes and
generic advice methods. To some extent this is due to a temporary limitation in
the pointcut file syntax, which in turn is related to the C# compiler’s renam-
ing of a generic source class C<T,U> { ... T ... } to the generic bytecode
class C‘2[T,U] { ... !1 ... }. This renaming is standardized by Common
Language Subset rule 43 in the Ecma CLI standard [14, I.10.7.2].

For an example where advising with an instance of a generic advice class
would be extremely useful, consider the (hypothetical) caching aspect below,
which ought to be applicable to any one-argument method with static type
checks and no runtime overhead, even when the argument or return type is a
primitive type:

public class CacheAdvice<A,R> {
static Dictionary<A,R> cache = ...;

static R MethodAdvice(A x) {
if (cache.ContainsKey(x))

return cache[x];
else

return cache[x] = JoinPointContext.Proceed<R>();
}

}

8.6 No Generic Target Classes

Yiihaw does support the weaving of generic target methods, both with non-
generic and generic advice methods, but currently the pointcut file must specify
the names of the targeted methods in the CLI/.NET bytecode format Method‘2
instead of the source format Method<T,U>, using the renaming performed by
the Microsoft and Mono [31] implementations when compiling generic methods
(similar to the CLI generic class renaming mentioned above). This ability also
implies that generic advice can be composed (section 6) .

The pointcut language syntax does not allow a target class to be a generic
class such as List<T> or a type instance such as List<int> of a generic class.

8.7 The Proceed<T> Method Can Be Called Only Once in Advice

Since Yiihaw “around” advice is implemented by inlining the target method
at every occurrence of Proceed<T> in the advice method, multiple occurrences
would lead to code duplication. To avoid this, Yiihaw allows at most one oc-
currence of Proceed<T> in an advice method. The restriction could be lifted at
modest extra work (renaming of local variables) in the weaver, but the restriction
has not been onerous in the applications we have considered.

Zero-Overhead Composable Aspects for .NET 211

8.8 No Special Debugging Support

A woven assembly will consist of a mixture of the target assembly and any
number of copies of fragments from the advice assembly. A standard debugging
environment cannot track each type, member and bytecode instruction back to
the original source file without some assistance.

Currently Yiihaw does not provide any such assistance, but it might be ex-
tended to weave also debugging information in parallel with the assembly weav-
ing, for instance by manipulating .pdb (“program database”) files associated
with the .NET assemblies. Work in this direction can build on existing research
on debuggable aspect weaving [12].

8.9 Cannot Weave into Signed Assemblies

Yiihaw (naturally) cannot weave advice into signed assemblies, and therefore
cannot add aspects to the .NET Framework Library classes, for instance.

9 The Expression Problem

One touchstone for a program composition technique is whether it offers a plau-
sible solution to the expression problem. This is the well-known challenge of how
to organize expression syntax definition and expression processors so that the
set of data (syntax) variants and the set of processors can be extended indepen-
dently and in a typesafe manner. See Torgersen [36] or Zenger and Odersky [40]
for an introduction and references.

It would seem that one could use normal object-oriented structure for adding
new data variants, and use aspects for adding new processors. But the latter
does not quite work with the current Yiihaw weaver, because it does not take
into account that the base type of some other type has changed, and that new
operations have become available.

To see this, consider the following base target assembly where we have data
variants Num and Plus, and one operation Eval:

public interface IEval {
int Eval();

}
public interface IExpr : IEval { }
public class Num : IExpr {
int value;
public Num(int value) {
this.value = value;

}
public int Eval() {
return value;

}
}
class Plus : IExpr {

212 R. Johansen, P. Sestoft and S. Spangenberg

IExpr left, right;
public Plus(IExpr left, IExpr right) {
this.left = left;
this.right = right;

}
public int Eval() {
return left.Eval() + right.Eval();

}
}

Adding a new data variant, say Neg, can be done in one place in standard object-
oriented style. We will now try to add a new operation Show() as an aspect. We
can define a new interface IShow to describe the show method:

public interface IShow {
String Show();

}

and then either modify interface IExpr to extend that interface, or insert method
Show() into interface IExpr.

Then we can add Show() to the Num class, thus ensuring it implements the
modified IExpr interface, by defining an advice method and inserting it into the
existing Num class:

public class NumShow {
public String Show() {
return value.ToString();

}
}

However, this will be rejected by the C# compiler because there is no field
called value. One solution to this problem is to make NumShow a subclass of
Num, provided Num’s value field were not private.

Another solution is to add a “preliminary” field to the NumShow class, like
this:

public class NumShow {
int value;
public String Show() {
return value.ToString();

}
}

Then this advice file would compile. Moreover, the Yiihaw aspect weaver would
allow it to be applied to the Num target class, because that class has a field of the
same name and type, and the references to value in the advice method Show will
be adjusted to refer to the target class’s value field instead. Hence the weaving
should succeed from the point of view of the value field.

But even more is needed. Consider how to add Show() to the Plus class.
Using some foresight and the idea of “preliminary” fields from above, we add
fields of type IShow to the advice class:

Zero-Overhead Composable Aspects for .NET 213

public class PlusShow {
IShow left, right;
public String Show() {
return left.Show() + "+" + right.Show();

}
}

Again this advice file would be accepted by the C# compiler because the required
fields exist and their type has the Show() method. However, the weaver will now
have to realize not only that the target class (Plus) has fields called left and
right. It will also have to realize that while the declared type of those fields is
IExpr, that type has been extended to be a subtype of IShow, or at least declare
Show(), thanks to the ongoing weaving.

Since the woven classes Num and Plus implement IShow only thanks to the
same weaving, the weaver’s checks must find a maximal fixpoint (checking every-
thing under the assumption that all is well until proven otherwise) rather than
a minimal fixpoint (checking everything under the assumption that everything
is ill until proven otherwise). This is the subject of future work.

10 Future Work

In future work, we want to remove the type-related limitations listed in section 8
above, in particular to allow weaving with type instances of generic advice classes
(section 8.5) and weaving into generic target classes (section 8.6). Moreover, more
sophisticated weave-time checks (section 4.7) on required fields and methods
should permit a solution to the expression problem (section 9) while ensuring
that Yiihaw will produce only well-formed and verifiable CLI/.NET assemblies.

Other future work involves better pointcut file syntax for describing generic
advice and target classes, and in general for describing composite types.

It is not an immediate goal for Yiihaw to support more join points, such as
“cflow”, or to support aspect instances.

11 Conclusion

We have presented Yiihaw, a new static aspect weaver for C#, VB.NET and
other languages for the Common Language Infrastructure (CLI) [14], also known
as the Microsoft .NET platform. The design makes several practical advances,
in part by leveraging the CLI/.NET platform’s existing features well. We have
shown that for this reason the implementation is relatively simple and non-
redundant, and we have given a few examples of the application of the weaver.
Finally we have compared Yiihaw with other known weavers for CLI/.NET,
and we have listed Yiihaw’s limitations and some desirable improvements and
avenues for future work.

Acknowledgements. Thanks to Microsoft Development Center Copenhagen and
IFIP Working Group 2.11 on Program Generation for comments and feedback,

214 R. Johansen, P. Sestoft and S. Spangenberg

to Don Batory for comments, feedback and encouragement at the Ĺıpari 2007
summer school, to Sven Apel for pointers to the literature, and to the anonymous
referees of AOSD’08 and the Lipari volume for their constructive comments.

Yiihaw is a recursive acronym for Yiihaw is an intelligent and high performing
aspect weaver.

References

1. AOP .NET.: Home page, http://sourceforge.net/projects/aopnet/
2. Apel, S., Kästner, C., Leich, T., Saake, G.: Aspect refinement. unifying AOP and

stepwise refinement. Journal of Object Technology 6(9), 13–33 (2007)
3. Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Transactions on

Software Engineering 34(2), 162–180 (2008)
4. Aspect#. Home page., http://www.castleproject.org/AspectSharp/
5. AspectDNG. Home page, http://aspectdng.tigris.org/
6. Aspect.NET. Home page,

http://www.academicresourcecenter.net/curriculum/pfv.aspx?ID=6801
7. Avgustinov, P.: Optimising AspectJ. In: Programming language design and imple-

mentation (PLDI 2005), pp. 117–128. ACM, New York (2005)
8. Bodden, E., Forster, F., Steimann, F.: Avoiding infinite recursion with stratified

aspects. In: Hirschfeld, R., Polze, A., Kowalczyk, R. (eds.) NODe 2006 GSEM
2006, GI-Edition edn., September 2006. Lecture Notes in Informatics, vol. P-88,
pp. 49–64. Gesellschaft für Informatik (2006)

9. Cecil. Home page., http://www.mono-project.com/Cecil/
10. DotSpect. Home page., http://dotspect.tigris.org/
11. Microsoft Dynamics. Home page, http://www.microsoft.com/dynamics/
12. Eaddy, M., Aho, A., Hu, W., McDonald, P., Burger, J.: Debugging aspect-enabled

programs. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
200–215. Springer, Heidelberg (2007)

13. Ecma International TC39 TG2. C# Language Specification. Standard ECMA-334,
3rd edition. Geneva, Switzerland (June 2005), http://www.ecma-international.
org/publications/standards/Ecma-334.htm

14. Ecma International TC39 TG3. Common Language Infrastructure (CLI). Stan-
dard ECMA-335, 3rd edition. Geneva, Switzerland (June 2005), http://www.
ecma-international.org/publications/standards/Ecma-335.htm

15. EOS. Home page, http://www.cs.iastate.edu/
16. Filman, R., Friedman, D.: Aspect-oriented programming is quantification and

obliviousness. In: Workshop on Advanced Separation of Concerns, OOPSLA 2000,
Minneapolis (October 2000)

17. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: Third international con-
ference on Aspect-oriented software development (AOSD 2004), pp. 26–35. ACM,
New York (2004)

18. Jagadeesan, R., Jeffrey, A., Riely, J.: Typed parametric polymorphism for aspects.
Science of Computer Programming 63(3), 267–296 (2006)

19. Johansen, R., Spangenberg, S.: Generation of specialized collection libraries. Four-
week project, IT University of Copenhagen (2006)

20. Johansenand, R., Spangenberg, S.: Yiihaw. An aspect weaver for. NET. Master’s
thesis, IT University of Copenhagen, Denmark (February 2007)

http://sourceforge.net/projects/aopnet/
http://www.castleproject.org/AspectSharp/
http://aspectdng.tigris.org/
http://www.academicresourcecenter.net/curriculum/pfv.aspx?ID=6801
http://www.mono-project.com/Cecil/
http://dotspect.tigris.org/
http://www.microsoft.com/dynamics/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.cs.iastate.edu/

Zero-Overhead Composable Aspects for .NET 215

21. Johansen, R., Spangenberg, S., Sestoft, P.: Yiihaw .NET aspect weaver usage guide.
Technical report, IT University of Copenhagen, Denmark (September 2007)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

23. Kniesel, G., Rho, T.: A definition, overview and taxonomy of generic aspect lan-
guages. L’Objet, Special Issue on Aspect-Oriented Software Development 11(2–3),
9–39 (2006)

24. Kokholm, N., Sestoft, P.: The C5 Generic Collection Library for C# and CLI. Tech-
nical Report ITU-TR-2006-76, IT University of Copenhagen, 254 pages (January
2006)

25. Lohmann, D., Blaschke, G., Spinczyk, O.: Generic advice: On the combination of
AOP with generative programming in aspectC++. In: Karsai, G., Visser, E. (eds.)
GPCE 2004. LNCS, vol. 3286, pp. 55–74. Springer, Heidelberg (2004)

26. Lohmann, D., et al.: A quantitative analysis of aspects in the eCos kernel. In:
Berbers, Y., Zwaenepoel, W. (eds.) EuroSys 2006, Leuven, Belgium, April 2006,
pp. 191–204. ACM, New York (2006)

27. Rapier LOOM. Home page,
http://www.dcl.hpi.uni-potsdam.de/research/loom/

28. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A disciplined approach to aspect
composition. In: PEPM 2006: Proceedings of the 2006 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pp. 68–77. ACM,
New York (2006)

29. NKalore. Home page, http://aspectsharpcomp.sourceforge.net/
30. PostSharp. Home page, http://www.postsharp.org/
31. Mono Project. Home page, http://www.mono-project.com/
32. Safonov, V.: Aspect.net: Concepts and architecture. NET Developer’s Journal (Oc-

tober 2004), http://dotnet.sys-con.com/read/46616.htm
33. Sestoft, P., Vaucouleur, S.: Technologies for evolvable software products. In: Börger,

E., Cisternino, A. (eds.) Software Engineering. LNCS, vol. 5316, pp. 216–253.
Springer, Heidelberg (2008)

34. Setpoint. Home page, http://setpoint.codehaus.org/
35. Spinczyk, O., Lohmann, D., Urban, M.: AspectC++: An AOP extension for C++.

Software Developer’s Journal 5(68-76) (2005)
36. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP

2004. LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004)
37. Weave.NET. Home page, http://www.dsg.cs.tcd.ie/dynamic/?category
38. Wicca. Home page, http://www1.cs.columbia.edu/
39. Yiihaw. Home page, http://yiihaw.tigris.org/
40. Zenger, M., Odersky, M.: Independently extensible solutions to the expression prob-

lem. In: Workshop on Foundations of Object-Oriented Languages, Long Beach,
USA (January 2005)

http://www.dcl.hpi.uni-potsdam.de/research/loom/
http://aspectsharpcomp.sourceforge.net/
http://www.postsharp.org/
http://www.mono-project.com/
http://dotnet.sys-con.com/read/46616.htm
http://setpoint.codehaus.org/
http://www.dsg.cs.tcd.ie/dynamic/?category
http://www1.cs.columbia.edu/
http://yiihaw.tigris.org/

Technologies for Evolvable Software Products:
The Conflict between Customizations

and Evolution

Peter Sestoft and Sebastien Vaucouleur

IT University of Copenhagen, Denmark
{sestoft,vaucouleur}@itu.dk

Abstract. A software product is software that is built for nobody in
particular but is sold multiple times. A software product is typically
highly customizable, or adaptable, to particular use contexts; moreover,
such a software product can typically be thought of as a common kernel
plus a number of customizations, one for each use context. A success-
ful software product will be used for many years, and hence the kernel
must evolve to accommodate changing demands and environments. The
subject of this paper is the conflict between the customizations made for
each use context and the evolution of the kernel over time. As a case
study we consider Microsoft Dynamics AX and Dynamics NAV, highly
customizable enterprise resource planning (ERP) software systems, for
which upgrades are traditionally costly. We study the challenges related
to the customization/evolution conflict and present some software engi-
neering approaches, programming language constructs and software tools
that attempt to address these problems, and discuss whether they could
be brought to bear on the conflict.

1 Introduction and Definitions

A successful software product is typically released in many versions over many
years; it evolves over time. Also, a software product is typically customized to
permit effective use in many different applications and contexts. In this work,
we are interested in the problems and conflicts that arise from the combination
of evolution and customization; we call this the upgrade problem.

In this section, we define the most important terms used in the next sections.
Then we discuss the relation to the concept of a software product line as it is
currently used in the literature. Finally, we outline the contributions and the
structure of the paper.

Definitions. A software product is software that can be used in many different
contexts, such as a shared calendar system for organizations, or a text process-
ing system. Such software products should be contrasted with software that has
been developed in a project for a particular purpose, for instance for the securi-
ties trading desk of a particular bank. One may view a particular instance of a
software product, deployed in a particular context or organization, as consisting

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 216–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Technologies for Evolvable Software Products 217

of a software kernel, plus customizations (adaptations of the kernel to the con-
text), plus possibly further configurations, whether organization-wide or for the
individual end-user. In this paper we shall distinguish customization, which can
add new and possibly unforeseen features to software, from configuration, which
enables or disables features that are already present in the software, change their
behaviour, or affect the way they appear to the end-user1. Software evolution is
the phenomenon that software must change over time to stay useful: errors must
be fixed, security holes must be plugged, new functionality must be supported,
and changes in the environment must be accommodated [25]. Finally, software
composition is the construction of software applications from existing software
parts.

Software product lines. The software products considered in this paper are
clearly related to software product lines [17]. Software product lines typically have
a closed-world assumption in which a central agent (such as a chief engineer)
has a clear idea of all the variations that are required. We will consider this ap-
proach to customization and compare it with approaches that have an open-world
assumption – that is, where no central agent has a clear understanding of all the
possible customizations that may be needed for a software product.

For software product lines with a closed-world assumption, the construction
of a particular member of the product line comes down to choosing from a
predefined set of features, that is, to configuration. In that case, kernel evolution
and customization are hard to distinguish.

Contributions. The contribution of this paper is two-fold. First, it gives a more
precise characterization of what we call the upgrade problem. Domain experts
and practitioners have previously claimed that the upgrade problem is an impor-
tant one, but surprisingly it has never been thoroughly studied from a technical
angle to the best of our knowledge. Second, we give a subjective evaluation of
some of the most commonly used customization techniques and study how they
can be used to mitigate the upgrade problem. We support our conclusions by
using an explicit set of criteria, as well as a simple running example.

Roadmap. The next section gives a detailed explanation of the upgrade prob-
lem. Then, section 3 gives a concrete example of this problem, through a study
of two widely used ERP systems. Section 4 gives a list of criteria that will be
used in section 5, the core of the paper, to give a subjective evaluation of some
of the most widely used customization technologies.

2 The Upgrade Problem

The focus of this work is the interaction of two distinct dimensions of change,
namely customization and evolution. When the kernel of a software product
1 Note that this terminology is not universally accepted. For instance, the Microsoft

Excel 2003 menu Tools > Customize performs what we would call configuration: it
determines which toolbars to display in the user interface, and so on.

218 P. Sestoft and S. Vaucouleur

evolves, and an organization wants to upgrade to a new version of this kernel,
the customizations of the deployed software product must be carried over to the
new version. In simple cases this may just involve copying the customizations
over unchanged, but in general it may involve a rewrite of the customizations
and also require comprehensive knowledge of the customizations as well as the
old kernel and the new kernel; see section 3.9. This work incurs considerable
cost and often causes end-user companies to postpone the upgrade as long as
possible.

2.1 Customizable Software

Almost all software is configurable. Even the most mundane of applications, the
Minesweeper game delivered with Microsoft Windows, has several levels of diffi-
culty, sounds on or off, and so on. Also, there is hardly a Unix (or Linux) program
without a configuration file somewhere in /etc/, or a .foorc configuration file
in the user’s home directory.

Moreover, much software is customizable, in the sense that it admits subse-
quent extensions of its functionality, unforeseen at the time the software itself
was designed, implemented and shipped. For instance, Web browsers such as
Firefox support add-ons that enable the browser to display new media types;
spreadsheet programs such as Microsoft Excel support add-ins that enable the
spreadsheet program to solve optimization problems and other specialized tasks;
and integrated development environments such as Eclipse support plug-ins that
enable the development environment to support new programming languages,
graphical modelling tools, and so on. These add-ons, add-ins and plug-ins are
what we call customizations.

In all the above examples the additional functionality is provided via software
components that can be dynamically loaded into a running application on de-
mand. A more static approach would permit customization when the software
is built, by importing (or not) third party features into the software when it is
compiled or linked. Operating systems such as Linux support both static and
dynamic customization: drivers for particular network devices, file systems, and
so on can be added to the Linux kernel when compiling it, and in addition some
modules (e.g., wireless network drivers, support for USB devices) can be loaded
and unloaded on demand while the operating system is running.

In the above examples, there are well-specified interfaces between the kernel
and the software (add-ins, add-ons, plug-ins, modules) that implement the ad-
ditional functionality. For some software systems it is difficult or impossible to
foresee what kinds of customizations are needed, so it is impossible to design
interfaces that are both general enough and specific enough. Instead, (some)
customizations require edits to the kernel software itself. We shall call the latter
a white-box approach to customization of the kernel.

2.2 Software Evolution

All software will change from time to time, if it is used at all, as evidenced
by the all too familiar and increasingly arcane version numbers: C# compiler

Technologies for Evolvable Software Products 219

version 3.5.21022.8, Eclipse version 3.3.1.1, Oracle database version 9.2.0.6.0,
Linux kernel 2.6.23.1-42.fc8, and so on.

Software evolution is a research topic in its own right, pioneered by Lehman
in an empirical research setting three decades ago [24,23], and now having its
own conferences, terminology and methods, as well as a Journal of Software
Maintenance and Evolution. Lehman’s original software evolution research made
several observations: We all too often believe that the system we are currently
building will be the final one, and hence we fail to plan for change, whether
foreseeable or unforeseeable. Also, the very purpose of some kinds of software
systems, called E-programs by Lehman [24], is to cause a change in the context
in which they are deployed, and hence those are even more prone to change, as
the context changes and feeds back change requirements on the software system.
Current research on software evolution and maintenance attempts to classify the
various reasons for evolution [25], to propose theoretical means to understand
software evolution and to find practical mechanisms to help maintain software
during evolution.

Probably the strongest drivers of software evolution are:

– commercial pressure to support additional functionality
– organizational changes, such as company mergers
– legal changes, such as additional audit requirements
– changing technical environments, such as evolving operating systems
– demand for distributed and mobile access and new user interface technology
– co-evolution for interoperability with other software

2.3 The Evolution of Specifications

The problem of supporting customization as well as evolution cannot be ad-
dressed without taking evolving specifications into account. In an ideal software
architecture, every software kernel component is accessed only through a well-
defined specified interface. If a customization modifies a component, but the
component continues to satisfy the specified interface, then obviously the soft-
ware system continues to work correctly, using the traditional relative notion of
correctness (satisfaction of a specification).

However, the point of software evolution is often that the specification must
change, not just the implementation. Changes to the specification are usually
caused by changes in the environment, such as new business processes or user
needs, as outlined in section 2.2. When the specification changes, the black-
boxing of the implementation behind the specification provides little help in the
upgrade of customizations.

The more interesting and challenging case is when the software kernel evolves
due to a changing specification, not the case where its implementation changes
but the interface specification remains the same.

2.4 Upgrade Problems in Operating Systems

In early versions of Microsoft Windows, upgrade problems would be experienced
almost daily, a phenomenon that was known under the name “DLL hell”. Most

220 P. Sestoft and S. Vaucouleur

applications would rely on dynamically loaded libraries (DLLs), which were typ-
ically shared system-wide between multiple applications. This caused problems
because at any time there could be only one installed version of each DLL, and
newer versions of a DLL were not necessarily backward compatible. For instance,
installing a new version of the Internet Explorer web browser might require an
upgrade also of a DLL, and the deletion of the old version. Subsequently one
would discover that the accounting software installed on the same computer had
relied on that old version and was incompatible with the new version, and hence
stopped working. At its core, the problem was that multiple applications relied
on a common resource (DLL), and that one application would affect the others
through unwanted modification of the common resource. Another variant of this
problem would be that manipulation of the path environment variable caused
by installation or upgrade of one application would mean that other applications
could no longer locate their DLLs and therefore stopped working.

The same problems could be observed in early Linux distributions, where an
upgrade of the gcc C compiler and its associated libraries might break some
other part of the system. In more recent versions of Microsoft Windows as well
as Linux, such problems are addressed by allowing multiple versions of the same
library to coexist. For instance, in a current Linux installation one may find both
versions 0.9.7a and 0.9.7f of the libssl.so library.

Modern programming platforms, such as Microsoft’s .NET, address these
problems in an even more powerful way, by allowing one library (called an as-
sembly) to express its versioned dependencies on other libraries. A forthcoming
version of the Java platform is expected to support versioning of libraries (called
modules) and versioned dependencies in a similar way [15]. In the experimen-
tal language Fortress being developed at Sun Microsystems for DARPA, the
basic program module is the trait (see section 5.6), and the language aims to
provide upgradable program components in the form of versioned collections of
traits [2,3].

2.5 Conclusion on the Upgrade Problem

The upgrade problem is found in many contexts and can be addressed in many
ways. In the remainder of this paper we focus on software products, and in par-
ticular on the conflict between customization of a software kernel and subsequent
evolution of that kernel. In particular, we consider this problem in relation to
highly customizable enterprise software systems.

3 Case Study: Dynamics AX and NAV

To get a more concrete setting for discussing upgrade problems, we now present
Microsoft Dynamics AX [26] and Dynamics NAV [27,38], two enterprise resource
planning (ERP) systems from Microsoft Corporation.

For short, the term “Dynamics” will refer to the Dynamics products (AX
and/or NAV), and the term “Dynamics developers” will refer to the core Dy-
namics development teams at Microsoft.

Technologies for Evolvable Software Products 221

3.1 Add-ons and Customizations

Both Dynamics AX and Dynamics NAV are highly customizable and config-
urable, and customization takes place in several stages. Microsoft builds and sells
a kernel system, consisting of runtime environment, database system, develop-
ment environment and a number of core packages, e.g., for sales tax reporting
in a particular country. A large number of partners, also called independent so-
lution vendors (ISVs) or value-added resellers (VARs), sell add-on solutions and
customizations.

An add-on solution may be targeted to a particular industry (a vertical solu-
tion area), such as apparel and textiles, or address a particular activity within an
organization (a horizontal solution area), such as customer relationship manage-
ment. Several add-on solutions may be used together in a Dynamics installation.
Simply put, in ERP parlance an add-on is a set of customizations.

Further customizations may be created on top of the kernel and the add-
ons, thus tailoring the ERP system to the needs and processes of a particular
company. Some end-user companies even make such customizations themselves.

Add-ons are written as additional modules or by modifying parts of the kernel
modules, using the development environments. Hence, Dynamics AX and NAV
are software products developed over a long time and sold in many copies, with a
wide range of customizations, to many different customers. They also exhibit the
upgrade problem outlined in section 2 above, in a particular way: The add-ons
and customizations are developed primarily by partner companies, whereas the
kernel evolution is controlled primarily by the Dynamics development team.

This section will provide details about the Dynamics software products, the
upgrade problems experienced, and some current practices to alleviate them.

3.2 Dynamics NAV Versus Dynamics AX

Before we dive into the upgrade problems in more detail, let us consider the char-
acteristics of the Dynamics NAV and Dynamics AX enterprise resource planning
systems. Both systems are partially model-driven and partially programming
language based. Namely, database tables, runtime data structures, and the user
interface (forms) are described by metadata, not built using programming lan-
guage declarations. On the other hand, behaviour is described using traditional
programming language constructs, called code units, which correspond to func-
tions or methods.

The two systems have distinct organizational and technical characteristics:

– Dynamics NAV mostly targets smaller organizations, for which pre-devel-
oped add-ons mostly suffice, so they only require minor customizations. A
large number of organizations run Dynamics NAV. The integrated develop-
ment environment is called C/SIDE, and the programming language, C/AL,
is a relatively simple language with a Pascal-like syntax. The developers em-
ployed by NAV partners usually focus on the customer’s business and many
do not have a strong background in software development. Code unit cus-
tomizations are made simply by editing the required code units in the C/AL
language.

222 P. Sestoft and S. Vaucouleur

– Dynamics AX mostly targets larger and more complex organizations, that
often require extensive customizations. Fewer organizations use Dynamics
AX than NAV. The integrated development environment is called MorphX,
and its proprietary programming language X++ is an object-oriented lan-
guage with a Java-like syntax. The developers employed by AX partners
often have a good background in software development. The Dynamics AX
model is structured into a number of layers, with layers for the kernel, layers
for partners’ customizations, layers for further customizations in the end-user
organization, and so on; see section 3.8. A code unit customization is made
by copying the code unit from the layer at which it was originally defined
and then adding and editing at a higher layer. The higher layer version will
then be used instead, and is said to shadow the lower layer code unit; see
section 3.9.

We present both systems here, because their different organizational and tech-
nical characteristics cause different kinds of upgrade problems.

3.3 The Dynamics Ecosystem

Microsoft and its partner companies form an ecosystem in which the partners
depend on Dynamics developers for providing a kernel that is robust, compre-
hensive, easily customizable, and up to date. Conversely, Microsoft depends on
the partners for marketing its kernel, for developing add-ons that make it valu-
able for customers, for making customizations, and for deploying the customized
solutions in customer organizations.

There is a delicate balance in relation to the evolution of the system kernel: If
the kernel changes by frequent small steps, then the partners will find it difficult
to sell all these upgrades (of kernel and customizations) to their customers; but
if the kernel changes by infrequent radical steps, partners or customers may find
upgrade so complex that they can just as well switch to a competing product
(such as SAP, an Oracle-based system, or software as a service). Also, if the
kernel evolves too slowly or not at all, advanced customers may find that it
no longer interoperates well with other software they use, or does not support
new reporting standards or functionality that they need, such as visualization,
business intelligence, electronic trade, etc.

3.4 What Constitutes an Upgrade

Common to Dynamics AX and NAV is that an upgrade to an installation in-
volves upgrade of kernel and customizations as well as conversion of the end-user
organization’s production data. The data conversion poses interesting challenges
itself. First, it is highly time-critical because the end-user company usually can-
not conduct business while the data conversion is being done, so the conversion
must take place over a weekend or an extended weekend. Second, the data con-
version must be fully reliable, or it would disrupt the business. Third, full-scale
testing of the scripts that perform the data conversion cannot be conducted until
a test environment consisting of the entire upgraded ERP system (new kernel

Technologies for Evolvable Software Products 223

and upgraded customizations) is available, which is usually late in the process;
see also section 3.9. The code and metadata migration can be done in advance
of the actual data conversion upgrade; only the data conversion is time-critical
in this sense.

Nevertheless, we shall say no more about the data conversion process in this
paper, but focus on the problems caused by upgrade of code customizations.

3.5 Upgrade Problems in Dynamics NAV and Dynamic AX

It is clear from a survey of partners [10], from talking to the Dynamics AX and
NAV core development teams, and from various online forums and blogs, that
upgrade of customizations in Dynamic AX and NAV are problematic. For in-
stance, a public video from a Dynamics AX core developer [34] acknowledges
that upgrade of customizations can be costly: “Our research shows that an aver-
age upgrade costs as much as 30% of (the original cost of) the customizations”.
As further evidence, a Google search for dynamics nav upgrade gives 114,000
hits (January 2008). There are companies, such as Liberty Grove Software in
Illinois, USA, that specialize in doing NAV upgrades for other partners at a
fixed price quoted after a preliminary upgrade diagnostic. Also, partner-oriented
materials from Microsoft itself suggest that care is needed when customizing the
systems to minimize future upgrade problems (see section 3.10).

3.6 Constraints on a Solution to the Dynamics Upgrade Problem

Although a kernel upgrade affects both add-on solutions and partner-made cus-
tomizations (see section 3.1), in this paper we focus on the problems caused by
partner-made customizations, because fewer resources are available for upgrad-
ing those than for upgrading add-ons, which are usually sold more than once.

A potential solution to the upgrade problem should work with the current
ecosystem (see section 3.3), and should provide a plausible upgrade path from
the technologies currently used (the existing code base is very large, therefore
incremental technology adoption is important). Ideally the solution, especially
for NAV, should support the short edit-compile-run cycle that developers are
used to. Developers add, modify and experiment with customizations in the
development environment, and then immediately switch back to the running
enterprise application without a lengthy build phase and without restarting the
enterprise application and loading data anew.

3.7 Handling Upgrade in Dynamics NAV

Here we consider how the modest size and complexity of some NAV customiza-
tions mean that the upgrade of customizations can be handled by rather simple
techniques. A particular Dynamics NAV partner, Logos Consult in Denmark,
reports [28] that most of their original customization projects are small, on the
order of 50–500 man hours, and involve only one or two developers. While doing

224 P. Sestoft and S. Vaucouleur

the original customization, developers simply mark each change in the cus-
tomized code using stylized change comments with date and developer’s initials,
like this:

// >> 07.FM
DtldCVLedgEntryBuf."Document Date" := "Document Date";
DtldCVLedgEntryBuf."Job No." := "Job No.";
// <<

These stylized comments are easy to search for in the source base, and indicate
who made the change and when. Because customization projects are so small,
and because developers stay long with Logos Consult, this information is enough
for the developer to understand how to upgrade the customization when sub-
sequently the kernel gets upgraded; no special tools are used to assist in the
upgrade. Program comments might also be used to indicate why the change is
made, but often this is not needed.

The Dynamics NAV approach sketched above is simple and suffices for NAV
applications that do not differ too radically from the NAV kernel. However, it is
unlikely to scale to applications that require extensive customizations, such as
customizations that require a large number of places in the kernel source code
to be updated correctly.

In the rest of this paper we will focus on Dynamics AX, whose customizations
are usually much more elaborate than those for NAV.

3.8 The Layered Structure of a Dynamics AX Application

The Dynamics AX layering system supports multi-stage customization and ex-
tension. The architecture has eight layers [14, page 15], shown in Figure 1. An
application element (also called model element) at a higher layer hides one with
the same name on lower layers. This supports multi-stage customization because
a lower-layer application element may be customized at a higher layer, and that
customized application element may be further customized at a yet higher layer.

For each of the eight layers shown in Figure 1 there is a patch layer directly
above it, used for small delta updates, for instance to avoid redistributing a
slightly changed version of the entire 472 MB SYS layer file.

3.9 Customization Using AX Layers

To customize or extend an application element from a lower level (say SYS) at a
higher level (say LOS), the developer copies the entire application element to the
LOS level and makes the desired edits to it there. Henceforth the system will use
that customized application element. A subsequent upgrade to the application
element at the SYS level is not automatically carried through, but must be
handled manually in an upgrade project.

In response to a subsequent kernel upgrade, at least the following tasks must
be performed:

– Find all those lower layer elements that have changed in the new kernel
version and have been customized in the current installation.

Technologies for Evolvable Software Products 225

Layer name Meaning and purpose
USR User: Individual companies, or companies within an enterprise, can use

this layer to make customizations unique to customer installations.
CUS Customer: Companies and business partners can modify their installa-

tions and add the generic company-specific modifications to this layer.
The layer is included to support in-house development without jeopar-
dizing modifications made by the business partner.

VAR Value-added reseller: Business partners use this layer, which has no
business restrictions, to add any development done for their customers.

BUS Business solution: Business partners develop and distribute vertical and
horizontal solutions to other partners and customers. A vertical solution
targets a particular line of business such as brake pad manufacturing.
A horizontal solution addresses a particular task that is similar across
multiple businesses, such as car fleet management.

LOS Local solution: For strategic local solutions developed in-house.
DIS Distributor: For critical hotfixes.
GLS Global solution: For country-specific functionality.
SYS System: The lowest application element layer and the location of the

standard Dynamics AX application.

Fig. 1. The layers of a Dynamics AX application. The LOS, DIS and GLS layers
are developed by the Dynamics development team but their application elements can
be customized by partners. Only Dynamics developers have access to the element
definitions at the SYS layer.

– In each case, decide whether
(a) the new lower layer functionality makes the customization unnecessary;

if so, remove it
(b) the customization continues to work; if so, copy it to a new customization

of the lower layer code
(c) the customization no longer works; if so, design and implement a new

one

These steps require insight into both the old and the new version of the Dynamics
AX kernel, into the old customizations, and into the reason for making those
customizations in the first place. Hence this work must be done by an expert,
preferably the same developer who made the old customizations.

A shadow is an application element from the standard application that has
been modified at a higher level. The cost of an upgrade (of the standard appli-
cation, say from AX 3.0 to 4.0) is to a high degree determined by the number of
shadows [14, pages 464-467].

A partner-oriented textbook on Dynamics AX distinguishes the various en-
vironments in which a version of the system may execute [14, page 466]: pro-
duction environment, test environment and development environment. It also
distinguishes the following phases of the upgrade process, from Dynamics AX
3.0 to AX 4.0, say:

1. Test AX 3.0 layer files (customizations) in test environment
2. Create a production environment with AX 3.0 and the layer files

226 P. Sestoft and S. Vaucouleur

3. Modify layer files to work in AX 4.0; [that is, upgrade the customizations]
4. Write data migration code and migrate data from AX 3.0 production envi-

ronment to AX 4.0 development environment
5. Perform functional test of the AX 4.0 application with migrated data
6. Move AX 4.0 layer files to production environment and migrate up-to-date

AX 3.0 data files; this is the time-critical step mentioned in section 3.4
7. Start production on the AX 4.0 application

3.10 Mitigating Code Upgrade Problems in Dynamics AX

A public video called “Smart Updates” from a Dynamics AX core developer [34]
gives some advice on upgrade in Dynamics AX. Its main messages are:

– One should customize small application elements such as class methods, and
avoid big ones such as forms: “Once you customize an application element,
a copy of the entire original element is placed in the customization layer”.
The larger application elements one customizes, the more future upgrade
liabilities are incurred.

– One should avoid gratuitous customization: “It is tempting to customize ev-
erything” but then later the “customer upgrades the kernel application” and
“you’ll have to resolve all conflicts” that is, “whenever you’re overlayering
an element that has changed”

– One should avoid, whenever possible, code unit customizations that could
cause a conflict at a later upgrade. Instead one should use “class substitution”.

“Class substitution” simply exploits that the Dynamics AX language has object-
oriented features, unlike the Dynamics NAV language. The idea is to (1) make
a derived class of the to-be-customized lower layer base class, overriding the
method that should be customized; (2) to introduce a factory method, for in-
stance called “Construct()” that returns an object of the derived class instead
of the base class object; and (3) to make sure this Construct method is called
everywhere the base class constructor would otherwise be used. Section 5.1 below
further explores this approach to customization, which is a classic object-oriented
idea. The point is that a customization based on “class substitution” is much
easier to upgrade than a customization that consists of arbitrary edits to the
source code of a code unit.

4 Evaluation Criteria

This section describes the four central criteria that we will use in section 5 to
evaluate a range of customization technologies.

– Need to Anticipate Customizations (A kernel developer concern.)
– Control over Customizations (A kernel developer and partner concern.)
– Resilience to Kernel Evolution (An end-user concern.)
– Support for Multiple Customizations (A partner and end-user concern.)

Table 1 on page 250 summarizes the evaluation results.

Technologies for Evolvable Software Products 227

4.1 Need to Anticipate Customizations

Many software engineering techniques for software customization are based on
some degree of anticipation of future changes. When the designer can foresee
some future needs for customization and evolution of the software system, he
will choose a software design that can accommodate these with as few changes
as possible. Unfortunately, it is not always possible for the designer to foresee well
enough the broad class of possible future customizations. In general, there is a
trade-off between control and flexibility. For instance, a customization technique
that permits arbitrary source code edits offers little control but high flexibility.
Conversely, a customization technique that permits only a choice between a
number of predetermined options offer high control but little flexibility.

We distinguish approaches that:

– Require no anticipation. The customization technique does not require
anticipation of the customizations, whether of the customization points nor
of the customization kinds.

– Require anticipation of the customization points. The customization
technique requires the anticipation of the customization points – that is
where customizations can be applied in the source code.

– Require anticipation of the kind of customizations. In this case, the
customization technique expects the developer to foresee the content of the
customizations that will be potentially applied.

4.2 Control over Customizations

When a developer is customizing a correctly functioning software system, he
takes the risk that his changes break the coherence and correctness of the cur-
rent implementation. Hence, a customization technique should help in preserving
the intent of the original software maker. The customization techniques typically
offers control over customization at two different staging times: design-time and
run-time. We will categorize the customization techniques according to the fol-
lowing categories:

– Design time control over the customizations. Customizations can be
constrained during the design stage of the software product’s kernel.

– Run-time control over the customizations. The customization tech-
nique gives explicit support for controlling customizations at run-time (for
example activation and deactivation of certain customizations).

– No control over the customizations. The technique provides no explicit
support for controlling the customizations.

4.3 Resilience to Kernel Evolution

A software product that has been customized will eventually need to be upgraded
to a more recent version. Since the kernel will have evolved, it is likely that the
customizations cannot be ported automatically to the new version. Different
customization techniques have different weaknesses in this respect and require

228 P. Sestoft and S. Vaucouleur

different amounts of intervention from the developer to port customizations to
the new kernel. The third criterion is the resilience of customizations to the
evolution of the kernel. We will differentiate the following three categories of
explicit support for resilience to evolution of the kernel:

– Some resilience to evolution. The customization technique provides some
resilience even to evolution of parts of the kernel related to existing cus-
tomizations.

– Restricted resilience to evolution. Resilience only to evolution of parts
of the kernel unrelated to existing customizations. Existing customizations
may rely indirectly on some part of the kernel that has changed, which
may affect the behaviour of those customizations. In some cases this will be
intended—after all, the point of changing the kernel is to change the system’s
behaviour—but in some cases it will be unintended. We assume here that it
is impossible to distinguish those two cases by automatic means.

– No support for resilience to evolution. The customization technique
provides no explicit support for resilience to evolution of any parts of the
kernel. Any part of the kernel may have been altered by some customization,
so any change to the kernel may conflict with somebody’s customization.
Inspection (manual or tool-supported) is needed for each customization to
detect whether it conflicts with a change to the kernel.

4.4 Support for Multiple Customizations

Very often customizations are not made by the same company. The challenge
is that those multiple customizations must be gathered together into a single
product. We will distinguish three categories of techniques with respect to sup-
port for multiple customizations. First, those who support parallel development
(customizations can be independently developed and brought together at a later
stage, possibly by an other company). Those who support only sequential devel-
opment: customization are conceived one after the other. Finally we distinguish
the techniques that provide no explicit support for multiple development. We
summarize those three categories:

– Support for parallel development of customizations. Multiple cus-
tomizations can be independently developed and then subsequently applied
to the same customization point in the kernel. There is still a risk that the
customizations have unintended interference, for instance by updating some
data structure in the kernel.

– Support for sequential development of customizations. If one cus-
tomization is made after, and has access to the other one, then both can be
applied to the same customization point in the kernel.

– No support for multiple customizations. No support for multiple cus-
tomizations without breaking the abstractions that are used for the cus-
tomizations.

Technologies for Evolvable Software Products 229

4.5 Runtime Performance Penalty

Runtime performance can be an important criterion, especially for computation
intensive software systems and for core software such as collection libraries. How-
ever, all the customization technologies considered in this paper have acceptable
runtime performance overhead, typically comparable to a few indirections or
a virtual method call per customization point reached during execution. This
should be contrasted with reflective method calls, which are typically one or two
orders of magnitude slower.

Since all the technologies considered here have satisfactory performance, we
will not discuss this criterion further.

4.6 Illustration of the Criteria

We describe further the last three criteria through an illustration, see figure 2.

– Figure 2(a) illustrates our second criterion: a software product P1 is be-
ing customized by a third-party programmer and is further customized by

P1

P2

P3

a

b

(a)

P1
1 P2

1

P1
2 P2

2

P1
3 P2

3

a

b

a’

b’

(b)

P1

P2 P3

P4

a b

b’ a’

(c)

Fig. 2. Concerns (a) Further customization (b) Resilience to Kernel Evolution (c)
Support for Multiple Customizations

230 P. Sestoft and S. Vaucouleur

another programmer, resulting in a software product P3. The concern here
is the staging time of the control for customization: design-time, runtime,
etc.

– Figure 2(b) illustrates our third criterion: again, a and b are two successive
customizations of an original software product P1. The original kernel P 1

1
will eventually evolve into a new version P 2

1 . The concern here is the ease
with which customizations can be ported to the evolved kernel.

– Figure 2(c) illustrates our fourth criterion: here a and b are independently
conceived customizations of an original software product P1. Those two cus-
tomizations are then used by another company to compose the software
product P4. Informally, the concern here is that the two customizations can
be developed independently and brought together at a later stage, ideally
yielding an equivalent software product whether one applies a then b′, or b
then a′. Note that this equivalence is a design goal, not a theorem—to prove
such a thing would require a clear definition of the notion of equivalence.

5 Survey of Software Customization Methods

Software customization is a recurrent theme within the software engineering com-
munity. Software extension in particular has received much attention from the
researchers working on software reuse. Software reuse is important for economical
reasons: instead of developing software from scratch one hopes to save effort and
obtain better quality by reusing an existing software module, or sometimes an
entire software system. They are many different ways to implement customiza-
tions. In this section, we review some of these customizations techniques, and
we categorize them with respect to the criteria defined in the previous section.

5.1 Inheritance

Inheritance and dynamic binding are heavily used within object-oriented pro-
gramming to create families of software systems. Virtual methods allow for cus-
tomization by subclassing. This is essentially the “class substitution” approach
for Dynamics AX customization described in section 3.10.

For example, assume we need an Invoice class with a GrandTotal method
that is customizable in the sense that the computed grand total may be modified
by a customization. Then we can define a base class Invoice with a virtual
method After, like this:

public class Invoice {
protected virtual void After(ref double result) { /* do nothing */ }

public double GrandTotal(int input) {
double total = ...;
After(ref total);
return total;

}
}

Technologies for Evolvable Software Products 231

If we want to customize Invoice to give a 5 percent discount on grand totals
over 10,000 Euros, we declare a subclass in which After has been overridden to
do just that:

private class CustomizedInvoice : Invoice {
protected override void After(ref double result) {
if (result >= 10000)

result *= 0.95;
}

}

Basically, as is usual in object-oriented programming, the After virtual method
is a parameter (of function type) of the Invoice class, and that parameter may
be (re)bound in subclasses. This particular example is a variant of the well-known
Template Method design pattern [13].

To ensure that all clients use this customization of Invoice one can require
them to obtain Invoice instances only through a central factory method, using
the Factory design pattern [13]:

public static Invoice Construct() {
return new CustomizedInvoice();

}

Then only one place in the code needs to be changed when a new customization is
created. As a further precaution against clients creating un-customized Invoice
instances, one could declare the Invoice base class abstract.

Hence, customization of methods can be done by method redefinition. Dy-
namic binding allows for run-time selection of the method body to be executed
depending on the actual type of the target object. Multiple dispatch systems
such as CLOS claim to be more flexible in that they allow for the selection of
the methods upon the types of all of their arguments.

– Need to Anticipate Customizations. This technique requires anticipation of
the needed customization points. In the Invoice example, as in any use of
the Template Method pattern, the abstract template method is basically a
(function-type) parameter of the class, and one needs foresight to determine
which template methods are needed and where they need to be called. Also,
the designer of the software system must foresee that the Factory pattern
might be required to create an instance of a specific implementation of the
Invoice class.

– Control over Customizations. Correctness in statically-typed object-oriented
languages is mainly supported by the type system. The compiler will enforce
at design-time that the method to be called exists (no “Method not found”
exception at run-time) and that the formal and actual parameters are type-
compatible. Hence the control is done at design-time. Other languages (such
as Spec#, JML, etc.) allow for behavioral specification by the use of con-
tracts. Contracts are assertions that can be be checked at run-time, or, in
some specific cases, verified at compile-time. As an example, we could add

232 P. Sestoft and S. Vaucouleur

a post-condition to the After virtual method to ensure that the customized
variant of Invoice returns a non-negative value.

public abstract class Invoice {
protected abstract void After(ref double result)
ensures result >= 0;
...

}

– Resilience to Kernel Evolution. When the abstract class Invoice evolves,
customized versions of the software system might stop functioning correctly
or not even compile any longer. For example, using C#, if the type of the
formal parameter result in the abstract method After in class Invoice is
changed from double to int, the compiler will reject the existing customized
versions. The current version of C# does not allow any form of variance in
the redefinition of formal parameters in subclasses. Now consider the case
that the signature of the abstract method After does not change in the
new version of that base class, but that its post-condition now requires that
the result is positive. We say that the postcondition of the abstract base
method was strengthened in its new version. Existing customized version of
the Invoice class that assign zero to result now fail to satisfy the post-
condition specified in the abstract method. This is likely to only be discovered
at runtime, typically resulting in an exception. One may argue that this is
the only acceptable output in such a case.

– Support for Multiple Customizations. Single inheritance here restricts the
customizations to sequential development. More complex design patterns are
required to support the composition of independently developed customiza-
tions of Invoice. The decorator design pattern for example will allow for
more flexibility than does inheritance, allowing responsibilities to be added
and removed at runtime [13]. Also, a variant of the proxy pattern allows to
chain proxies, which provides support for multiple successive customizations.
Note that the order in which proxies execute can be crucial for correctness.

The chief advantage of the virtual method approach to customization is that
it is well understood and supported by mainstream programming languages such
as Java and C#. Evolution of the base class does not require any changes to the
customizations (subclasses) so long as no base class customization points are
removed and no customization point data types are changed. In particular it is
not necessary to edit the same section of source code, so one avoids the attendant
risks of one customization overwriting another one, and difficulties in upgrading
that section of source code.

The chief disadvantages of this approach to customization are that it requires
foresight as to which customization points may be needed, and that multiple
serial customizations of the same class cannot be developed independently of
each other: one customization must be a subclass of the other customization,
and hence must be aware of the existence of that other customization.

Technologies for Evolvable Software Products 233

5.2 Information Hiding Using Interfaces

Interfaces allow one to hide some of the design decisions that are not relevant to
clients. Since implementation details are unknown to clients, they do not become
dependent on them, and it is much easier to evolve the specific implementation –
hence thepopular slogan, “Programto an interface, not to an implementation” [13].
Also, by combining information hiding and inheritance, programmers can extend
existing interfaces in a subtype with new operations without breaking existing
clients. This is the traditional approach to evolution in a object-oriented setting.

Even if interfaces support evolution of their implementations, one has to keep
in mind that the interfaces themselves may need to evolve. Even if some design
decisions can be hidden behind an interface, as proposed by Parnas [32], the
published interfaces themselves cannot be changed without taking the risk of
breaking a large number of external software systems that depend on them.
An apparently harmless modification, such as adding a new operation to an
interface in C#, can cause great trouble: all the existing classes that implement
the previous version of the interface will have to be modified to support the
new operation. Abstract classes, as found for example in Java and C#, are
more interesting in this respect as they can sometimes meaningfully provide
a default implementation for a new operation. Consider the following abstract
class Invoice:

public abstract class Invoice {
public abstract ICollection<Item> Items { get; }

}

It is possible to add a method GrandTotal to this abstract class without breaking
the existing concrete subclasses:

public abstract class Invoice {
public abstract ICollection<Item> Items { get; }

public virtual double GrandTotal() {
return Items.Sum(item => item.Price * item.Quantity);

}
}

Note that if there is already a (non-virtual) method with the same name in the
subclass, the compiler will give a warning that the subclass implementation of
GrandTotal hides the inherited member. Note also that the default implemen-
tation provided by Invoice can be sub-optimal. For example a subclass that
maintains the current total in an instance variable will gain from overriding
GrandTotal and directly returning the instance variable.

public class InvoiceImp : Invoice {
...
public override double GrandTotal() {
return currentTotal; // instance variable

}
}

234 P. Sestoft and S. Vaucouleur

The problem with abstract classes is that a class can only have one base class
(in Java and C#), whereas it can implement multiple interfaces. This is not the
case for languages that support multiple inheritance. But multiple inheritance
tends to be criticized for its complexity and the problems that it brings along –
such as the infamous diamond inheritance problem.

The Component Object Model (COM) [36] uses interfaces to support evolu-
tion of components as well as client programs. A component can be used only
through its functions (operations, methods) as originally advocated by Parnas
[31]. An interface is a set of functions, where each function is described by its
signature: its name, its parameters (number, order and types), and its return
type.

The following restrictions on COM components and their interfaces help mit-
igate evolution problems:

– An interface (with a given interface identifier) must remain forever un-
changed once it has been published.

– A component may support any number of interfaces, and the set of interfaces
it supports may change over time.

– A client program can, at runtime, ask a component whether it supports
a particular interface (using its interface identifier) and hence whether the
component supports particular methods.

The restrictions support evolution of components, because an updated compo-
nent may exhibit new functionality through an additional interface, while contin-
uing to support its old interfaces. The updated component will continue to work
with existing client code, because such code will continue to ask the component
for its old interface and will be unaffected by new functionality.

The restrictions also support evolution of the client code. Obviously, any
change to the client that does not require new component behavior, will just
work with old and new components alike. If a client is updated so that it would
prefer to get some new behavior from a component, but can work with old client
behavior (only less efficiently, say), then the updated client simply asks the com-
ponent whether it supports the most desirable new interface that exhibits new
behavior, and failing that, asks it whether it supports the second-most desirable
interface, and so on. Hence this supports any number of steps of evolution.

If an updated component stops supporting some functionality (for instance,
because it has been deprecated for security reasons), it will have to stop support-
ing some old interface. Client code will discover that at runtime when asking for
the interface. Depending on the robustness of the client design, and the amount
of foresight that went into the design of the interfaces, the client may be able
to fall back on some other interface supported by the component; if not, it must
give up.

The latter scenario shows one drawback of the COM model: mismatches in
component evolution will not be discovered at compile time or deployment time,
only at runtime, when the client asks the component whether it supports the
requisite interfaces.

Technologies for Evolvable Software Products 235

– Need to Anticipate Customizations. Following the concepts of information
hiding, the designer has to come up with a list of design decisions which are
likely to change. Hence there is a strong requirement to anticipate changes.

– Control over Customizations. One of the famous epigrams by Perlis [33]
reads: “Wherever there is modularity there is the potential for misunder-
standing: Hiding information implies a need to check communication”. Types
allow for a limited form of checking. Contracts, mentioned previously, are
sometimes used to extend checking – but most of the control over customiza-
tions is typically done at design-time, through the use of static type checking.

– Resilience to Kernel Evolution. As long as the new version of the kernel
conforms to the published interface, the program will still compile. Of course
more guarantees than just type-conformance are typically needed to ensure
correctness of the software system (as explained in the criteria section 4).

– Support for Multiple Customizations. There is no direct support for inde-
pendently developed customizations, since the implementation of a specific
interface is provided by a single class. Using a combination of inheritance
and information hiding would allow for multiple sequential customizations
(in the context of single inheritance), but using information hiding alone will
not.

5.3 Parametric Polymorphism

Parametric polymorphism supports evolution because it can decouple some de-
sign decisions. For example, the designer of a new class Stack<T> will not have
to foresee the possible kinds of elements that will be contained in the stack, and
yet can enjoy type safety. Without parametric polymorphism, the designer of
the class Stack would have to either make a new version of the class for each
possible kind of element contained, such as StackOfPerson, StackOfInt, and
so on, or he would have to compromise type safety by losing type information
and using type casts, as in Person p = (Person)myStack.Top.

However, with parametric polymorphism or generic types as in Java, C# and
ML, the behaviour of a parametrized type or method is the same for all type
parameter instances — as implied by the term “parametric”. Hence parametric
polymorphism may support evolution but not really behavioural customization.
This is in contrast to templates in C++ [37] and polytypic programming and
generalized abstract data types in Haskell and extensions of C# [20], but we
shall say no more about those mechanisms here.

– Need to Anticipate Customizations. In the previous Stack example, para-
metric polymorphism does not depend on anticipation of customization of
the classes of the various element that will be stored in the stack – if the class
Person changes, the class Stack does not have to change. But very often, we
have to do more that just storing and retrieving objects from a collection:
we need to use constraints on the formal generic types. For example if a class
Invoice is seen as container of priced items, it is reasonable to require the
first generic type to be constrained by an interface IPriced. But if such a

236 P. Sestoft and S. Vaucouleur

constraint is used on the formal type parameter, then we are back on the
some problem as for information hiding: the interface IPriced can evolve.
(Also one should note that the choice of using a generic type for a specific
type declaration represents a form of anticipation itself.) For example, using
C#:

public interface IPriced { double Price { get; } }
public class Invoice<T> : Stack<T> where T : IPriced { ... }

– Control over Customizations. Similarly to other language based techniques
presented above, the type system ensures some degree of correctness. The
control over customizations is performed at design-time.

– Resilience to Kernel Evolution. A class Stack<T>with an unconstrained type
parameter, as above, need not change when the item type T changes. How-
ever, a generic type Painting<U> where U : Drawable with a constrained
type parameter U may need to change to be applicable to a new argument
type.

– Support for Multiple Customizations. Parametric classes can have several for-
mal type parameters, each of which can act as a placeholder until a runtime
type is used [1, page 76]. One could devise a solution where each of these
placeholders is used for a different customization.

5.4 Synchronous Events

In C#, so-called synchronous events, or callbacks, provide a flexible way to
customize behaviour when one can foresee where customizations are needed. To
add a customization point, one first declares a suitable delegate type (that is,
function type), such as After:

public delegate void After(ref double result);

Then to prepare a class for customizations, we add an event field such as after
to the class, and insert a conditional call to that event at the customization
point:

public class Invoice {
public static event After after;

public double GrandTotal(int input) {
double total = ...;
if (after != null)

after(ref total); // Event raised here
return total;

}
}

Now assume we need a customization to give a 5 per cent discount on invoices
over 10,000 Euros. The customization is added as a suitable anonymous method
to the static event field of the Invoice class:

Technologies for Evolvable Software Products 237

Invoice invoice = new Invoice();
Invoice.after += delegate(ref double result) {
if (result >= 10000)
result *= 0.95;

};

When the GrandTotal method of the Invoice class reaches the customization
point, it will raise the event and call the anonymous method, which will reduce
the total variable by 5 percent if it exceeds 10,000 Euros.

In the above example we associated the event with the class (as a static field)
and hence obtain class-level customizability as in the object-oriented approach in
section 5.1. Alternatively, one might use an instance field to obtain instance-level
customizability.

– Need to Anticipate Customizations. There is a strong need to anticipate cus-
tomizations, because one must create the necessary events and raise each
event at all appropriate places, in the right order. Also, the type of the event
being sent requires some insight into the forthcoming customizations.

– Control over Customizations. On one hand, the event argument types impose
restrictions that support design-time control over customizations. One the
other hand, triggering of events can be turned off at run-time providing a
form of run-time control over customizations.

– Resilience to Kernel Evolution. The event model is quite fragile under changes
to the base program: existing events may have to be raised at more or fewer
places.

– Support for Multiple Customizations. Multiple customizations can be made
simply by attaching multiple event handlers, so simultaneous development of
customizations is straightforward. This of course does not prevent unwanted
interactions between customizations as mentioned in the criteria section 4.
Moreover, the order of event handler invocation may be significant, yet it
may not be feasible to control the order in which handlers are invoked.

The chief disadvantage is that the event model is very dynamic—events can
be attached and removed at runtime—so it is difficult to determine statically
the properties of a system built with event listeners.

A less obvious disadvantage is that it is difficult to provide a complete specifi-
cation of the contract between the listened-to object (the one raising the event)
and the listening objects (those installing the event handlers). Namely, the in-
stallation y.Event+=x.h of an event handler x.h on object y is the beginning of
a potentially long-lasting interaction between objects x and y.

Hence to understand and correctly use an event model, one must consider at
least the following questions:

– What data can an event handler read, and what data can it modify? In Mi-
crosoft’s Windows Forms framework, unlike Java’s Abstract Window Toolkit,
it is customary to pass the entire “sender” object y to the event handler,
which seems to invite abuse by the event handler.

238 P. Sestoft and S. Vaucouleur

– What can the event handler assume about the consistency of data in the
sender y when it is called, and what must it guarantee about the state of
data in y when it returns?

– Could an event handler, directly or indirectly, call operations that would
cause further events to be raised, and potentially lead to an infinite chain of
events?

– At what points should an event be raised? This central design decision should
be based on semantic considerations, since it strongly influences the correct-
ness of upgrades of the kernel. For instance, it is better to specify that “the
event is raised after a change to the account’s balance” than to say that
“the event is raised after one of the methods Deposit or Withdraw has been
called”. The former gives better guidance when new methods are added, or
when considering bulk transactions such as DepositAll(double[]) whose
argument may be an empty array and hence perform no change to the ac-
count at all.

– What is guaranteed about multiplicity and uniqueness of events? For in-
stance, consider a class Customer derived from class Entity, where method
Customer.M() calls base.M(), and both implement an interface method
specified to raise some event E. Should a call to Customer.M() raise the
event once or twice?

5.5 Partial Methods as Statically Bound Events

The partial types and partial methods of the C# 3.0 programming language
offer a statically bound alternative to events. Wherever there would be a call to
an event handler, a call to a partial method is made instead. For instance, we
may declare a partial method called after and call it as in this example:

public partial class Invoice {
partial void after(ref double result);

public double GrandTotal(int input) {
double total = input * 1.42;
after(ref total);
return total;

}
}

If the method call is needed, that is, if there is a customization at the call point,
the partial method’s body may be declared in a different source file:

public partial class Invoice {
partial void after(ref double result) {
if (result >= 10000)

result *= 0.95;
}

}

Technologies for Evolvable Software Products 239

Then the two source files simply have to be compiled together, like this:

csc PartialMethod.cs PartialAfter.cs

If no customization is needed at the after(...) call point, one simply leaves
out the PartialAfter.cs file when compiling PartialMethod.cs, and then the
after(...) call will be ignored completely.

– Need to Anticipate Customizations. There is a strong need to anticipate cus-
tomization points, because one must create the necessary partial methods
and call them at all appropriate places.

– Control over Customizations. The partial method argument types impose
restrictions that supports control of customizations at design-time to some
degree.

– Resilience to Kernel Evolution. Similarly to events, the partial method cus-
tomization model is rather fragile under changes to the base program: exist-
ing partial methods may have to be raised at more or fewer places.

– Support for Multiple Customizations. Partial methods offer no explicit sup-
port for multiple customizations since there can be only one implementation
of a given partial method.

The chief disadvantage of partial methods, however, is that they are not dynam-
ically configurable; unlike events they cannot be added and removed at runtime
under program control. This provides poor support for the fluid way in which
developers prefer to interact with e.g. Dynamics NAV, mentioned in section 3.6.

There is a position between that of dynamically-bound events that may be
added and removed under program control (section 5.4) on the one hand, and
the partial methods that require recompiling and reloading the application (as
described above) on the other hand. Namely, one may use metadata to specify
the association of event handlers with events, and prevent the running program
from changing this association. This is the approach taken by Dynamics NAV.
The approach would enable the development environment to tell which event
handlers may be executed when raising a given event, and to discover potential
event cycles by analyzing the metadata and the code of the event handlers.
However, the other concerns and questions about events listed in section 5.4
must still be addressed.

5.6 Mixins and Traits

A mixin provides certain functionalities to the classes that inherit from it. It
is sometimes said that the mixin “export its services” to the child class. When
mixin composition is implemented using inheritance, mixins are composed lin-
early. Ducasse et al. [11] report several problems traditionally associated with
mixins. For example, it is reported that class hierarchies are often fragile to
changes since simple changes may impact many parts of the hierarchy. Traits
can be seen as an attempt to solve some of the problems caused by mixins.
A trait is, simply, a set of methods. A trait is not coupled with the class

240 P. Sestoft and S. Vaucouleur

hierarchy. Traits can be composed in arbitrary order (in their original definition)
and can be used to increment the behavior of an existing class. Ducasse et al.
emphasize that, using traits, the two roles of “unit of reuse” and “generator of
instances” can be respectively assumed by traits and classes, whereas both roles
are traditionally assumed by classes in object-oriented languages [11]. And since
traits are divorced from the class hierarchy, they do not suffer from the problems
associated with multiple inheritance.

Scala uses both mixins and traits to solve the code reuse limitations posed
by single inheritance [29]. Its mixin class composition mechanism allows for the
reuse of the delta of a class definition. The following example defines a trait
Invoice with an abstract method GrandTotal. The class InvoiceImpl will pro-
vide the implementation for this abstract method. Note that the two are, for
now, completely unrelated: Invoice and InvoiceImpl can be compiled indepen-
dently. For the sake of simplicity for the example, the method implementation
returns a constant.

trait Invoice {
def GrandTotal: double // Abstract definition

}
class InvoiceImpl {
def GrandTotal: double = 10 // Candidate implementation

}

A different developer (for example, in a partner company), can provide a cus-
tomization of the method GrandTotal.

trait DiscountInvoice extends Invoice {
abstract override def GrandTotal: double = super.GrandTotal * 0.95

}

Note that the developer implementing this customization does not have to know
about the concrete implementation; his customization extends the trait Invoice
and not the implementation class InvoiceImpl. Method GrandTotal is declared
above as abstract since it overrides a method which is not defined. Similarly,
another developer, (e.g., at another partner company), can define another cus-
tomization implementing a simple 1 Euro tax rule:

trait OneEuroTax extends Invoice {
abstract override def GrandTotal: double = super.GrandTotal + 1

}

Finally, a customer might want to combine the implementation InvoiceImpl
with the two traits DiscountInvoice and OneEuroTax that customize the be-
havior of GrandTotal:

class DiscountFirst extends InvoiceImpl
with DiscountInvoice
with OneEuroTax

Technologies for Evolvable Software Products 241

object Test {
def main(args : Array[String]) : Unit = {

// (10 * 0.95) + 1
println("Total " + (new DiscountFirst).GrandTotal)

}
}

Note that in this particular example, the order of the with clauses is significant,
due to the linearization of the super calls. In this case, the discount will first be
applied on the grand total, and then the one Euro tax will be added.

One of the problem with traits is that they usually do not give direct support
for state. Traits must be stateless, which imposes some strict limitations on their
use. Note that the traits community is actively working on stateful traits but
the current proposals also have some limitations (instance variables are local to
the scope of traits, with some exceptions), see [9].

– Need to Anticipate Customizations. Traits are attractive in our case since
they allow for fine-granularity code reuse. But some foresight is required to
design the collection of traits in a way that will be be most convenient for
the person performing the customizations, especially the specific grouping
of methods into traits.

– Control over Customizations. The compiler ensures type correctness. Using
traits, the control over customizations is performed at design-time.

– Resilience to Kernel Evolution. We showed in our example that the cus-
tomizations are decoupled from InvoiceImpl since they do not even need
to know about its existence. One the other hand, if the base trait Invoice
changes, the customizations will have to be adapted.

– Support for Multiple Customizations. The previous example demonstrated
that InvoiceImpl, DiscountInvoice and OneEuroTax can all be developed
independently, and finally composed together by the end-developer.

5.7 Aspect-Oriented Programming

Aspect-oriented programming [21] provides an alternative to the event models
described in sections 5.4 and 5.5. Although some realizations of aspect-oriented
programming restrict the insertion of extra code to the beginning or end of
a method body, others allow code to be inserted at arbitrary (but previously
identified) places in a method body [12]. Clearly the latter is equivalent to raising
events at those places in the method.

One concern that speaks against this approach is that a well-designed method
should encapsulate a state change that results in a coherent object state, so it
seems to go against software engineering principles to permit arbitrary mod-
ifications to a method’s body. This concern is similar to the concern that an
event handler should not modify the event sender object in arbitrary ways; see
section 5.4.

Here we consider only a rather special case of aspect-oriented programming,
namely aspect-like static program rewriting. We use Yiihaw, a static aspect

242 P. Sestoft and S. Vaucouleur

weaver for C# that works by rewriting of bytecode files [18]. It reduces run-
time overhead relative to event-based customization and permits static checks.
However, while Yiihaw’s pointcut language permits some quantification, it is
not particularly expressive. Other aspect weavers, such as AspectJ [22], would
provide more fine-grained customization, which would be an advantage compared
to event-based customization.

Customization Using Aspects. Consider again customization of the Invoice
example already seen in sections 5.1 and 5.4. Assume the Invoice class is de-
clared on a lower layer with an instance method GrandTotal:

public class Invoice {
public virtual double GrandTotal() {
double total = ...;
return total;

}
... other members ...

}

As before, assume that at the higher layer we want to customize this to give a
discount when the grand total exceeds 10,000 Euros. To do this, we separately
declare an advice method as follows:

public class MyInvoiceAspect {
public double DoDiscountAspect() {
double total = JoinPointContext.Proceed<double>();

// Customization point
return total * (total < 10000 ? 1.0 : 0.95);

}
}

and compile it, and then write an interception pointcut:

around * * double Invoice:GrandTotal()
do MyInvoiceAspect:DoDiscountAspect;

The target assembly and the advice assembly are compiled using the C# com-
piler and then woven by an aspect weaver. In the resulting woven assembly, the
GrandTotal method of the Invoice class will behave as if declared like this:

public class Invoice {
public virtual double GrandTotal() {
... complicated code ...
return total * (total < 10000 ? 1.0 : 0.95);

}
... other members ...

}

The resulting woven method has the exact same signature as the original target
method.

Technologies for Evolvable Software Products 243

Sequential Customization by Further Weaving. The woven method can
be used as target for further weaving. For instance, we may want to further
modify the Invoice class and its GrandTotal method to count the number of
times the GrandTotal method has been called. This involves adding a field int
count to the class and making further advice on the method.

The additional pointcut file must contain an introduction and an interception:

insert field private instance int MyNewInvoiceAspect:count
into Invoice;

around * * double Invoice:GrandTotal()
do MyNewInvoiceAspect:DoCountAspect;

We need to declare an advice class with a field and an advice method as follows:

public class MyNewInvoiceAspect {
private int count;
public double DoCountAspect() {
count++;
return JoinPointContext.Proceed<double>();

}
}

After compiling the advice and weaving it into the previously woven assembly,
we get a class Invoice that will behave as if declared like this:

public class Invoice {
private int count;
public virtual double GrandTotal() {
count++;
... complicated code ...
return total * (total < 10000 ? 1.0 : 0.95);

}
... other members ...

}

Evaluation of Aspects for Customization

– Need to Anticipate Customizations. Aspect-orientation does not require fore-
sight as to where events need to be raised, but there is an analogous though
less stringent need for foresight. Namely, customization points must be ex-
pressible as join points. In the case where only “around” interceptions are
expressible, foresight is needed to factorize the kernel so that all customiza-
tion points are methods, but it is not necessary to foresee which ones will
be customized.

– Control over Customizations. The type system of the implementation lan-
guage, combined with weave-time checks performed by the aspect weaver,
give some assurance that customizations are meaningful, and can point out
incompatible changes when one attempts to upgrade the base system.

244 P. Sestoft and S. Vaucouleur

– Resilience to Kernel Evolution. Aspect-oriented customization is fairly in-
sensitive to evolution of the base code so long as the names and parameters
of methods remain unchanged. However, if customized methods or their pa-
rameters get renamed, then the weaving may fail to customize a method it
should have, or may wrongly customize one that it should not.

– Support for Multiple Customizations. Aspect-oriented customization sup-
ports independently developed customizations just as well as do events.

Some research indicates that an aspect approach to cross-cutting concerns makes
software evolution harder, not easier, at least based on theoretical considerations
[39]. It is not clear that those results extend to our use of aspects. When us-
ing aspects for cross-cutting concerns, join points are likely to be described by
quantification, using only few pointcuts. However, when customizing software
products, the join points are customization points and are more likely to be
explicitly enumerated, using many pointcuts. Which gives more resilience to
evolution is unclear.

Aspects for Customization in Dynamics AX. Static aspect weaving, as
outlined above, offers a plausible way to perform customization of Dynamics AX
applications (section 3):

– It preserves the layer model of Dynamics AX. This in turn offers several
advantages. First, the overall philosophy will be readily understandable to
the current developers at the Dynamics core development team, as well at
partners and customers. Second, there is a likely upgrade path from the
current AX implementation to an AX implementation based on layers and
aspects.

– The aspect weaver can check, at weave time, the consistency of the modifi-
cations of upper layers with lower layers.

– Aspects can be statically woven so that they incur no performance penalty
at all, and hence would perform no worse than the existing source code based
customizations.

To express customizations as aspects we have used the Yiihaw aspect weaver
[19] described by another paper in this volume [18]. Although several aspect
weavers for .NET have been proposed, Yiihaw seems to be especially suited: it
introduces no runtime overhead at all, it statically checks aspect code ahead of
weave-time, it statically checks consistency of weaving, and it can further weave
an already woven assembly as indicated above. This is necessary in the Dynamics
AX scenario where lower layer code gets customized in a higher layer, and the
result gets further customized in an even higher layer; see figure 1 on page 225.
The limitations of the Yiihaw pointcut language and its notion of aspect mean
that some will consider it a tool for feature composition rather than a full-blown
aspect weaver, but it seems adequate for the purposes considered here.

5.8 Software Product Lines Using AHEAD

Feature-oriented programming has been developed over many years by Batory
and coworkers [7,8,6,35]. Part of the motivation for this work is the insight that

Technologies for Evolvable Software Products 245

future software development techniques will synthesize code and related arti-
facts (such as documentation) extensively. The research efforts have focused on
structural manipulation of these artifacts. These ideas can be seen as part of the
metaprogramming research field: programs are treated as data, and transforma-
tions are used to map programs to programs.

These ideas gave rise to concrete tools, among which GenVoca and AHEAD
[5] are prime examples. These tools were used to synthesize product lines for
various domains such as database systems and graph libraries. More concretely,
using a product line, a user can select among a set of predefined features and the
tool will combine artifacts to generate a program that implements the desired
functionality. The user typically uses a declarative domain-specific language to
express the feature selection he wants.

Among the various artifacts handled by these tools we henceforth focus our
attention on source code. The mixin is one of the core object-oriented concepts
that underpin this approach to code composition. In this context, a mixin is
a class whose superclass is specified as a parameter. Using the variant of Java
proposed by AHEAD, we can write a customization for the invoice example from
section 5.6:

layer tax;
refines class invoice {
overrides public double grandTotal() {
return Super().grandTotal() + 1;

}
}

This customization adds one Euro, a “tax”, to the grand total computed in
the base code (omitted for the sake of brevity). Note that the customization
is defined in a named layer “tax”. The discount customization, that we saw
previously, can be programmed similarly in a layer “discount”. The discount is
unconditional in this case to make the example a bit shorter.

layer discount;
refines class invoice {
overrides public double grandTotal() {
return Super().grandTotal() * 0.95;

}
}

To compose the base code invoice with the customizations, the programmer
can choose between two tools. The first one, called “mixin”, will transform the
composition into a class hierarchy. Using this tool, each customization will be
turned into an abstract class that extends another abstract class, with the ex-
ception of the last customization, discount in our case, which is turned into
a concrete class. Each class name in the hierarchy is a mangling of the name
invoice with the name of the originating layer – again with the exception of
the class that corresponds to the last customization (since it is the one that will
be instantiated).

246 P. Sestoft and S. Vaucouleur

package invoice;
abstract class invoice$$invoice implements invoice {
public double grandTotal() {
return ...;

}
}
abstract class invoice$$tax extends invoice$$invoice {
public double grandTotal() {
return super.grandTotal() + 1;

}
}
public class invoice extends invoice$$tax {
public double grandTotal() {
return super.grandTotal() * 0.95;

}
}

The other tool, called “jampack”, offers a more compact encoding of the code
composition. In this case, the base code and the customizations are turned into
static methods, with the exception of the last customization which is mapped
into a non-static method. The name mangling for method names is very similar
to the name mangling for class names performed by the other tool.

package invoice;
public class invoice {
public final double grandTotal$$invoice() {
return ...;

}
public final double grandTotal$$tax() {
return grandTotal$$invoice() + 1;

}
public double grandTotal() {
return grandTotal$$tax() * 0.95;

}
}

Mixins are often not conceived in isolation, but rather “carefully designed with
other mixins and base classes so that they are compatible” [5]. It is easy to see
in the above example that overriding grandTotal might break some other code
that relies on its initial semantics.

A particularly interesting feature of this work is the composition algebra and
design rule checking. The design rules are necessarily domain-specific, for in-
stance, for the domain of efficient data structures. Batory’s feature-oriented pro-
gramming for product lines [4] seems highly relevant and makes many points of
value for evolvable software products.

– Need to Anticipate Customizations. Similarly to classical object-oriented pro-
gramming, it seems that product-line engineering requires that the program-
mer has a good understanding of the domain. Classes must be designed in
such way to accommodate for mixin composition conveniently.

Technologies for Evolvable Software Products 247

– Control over Customizations. The AHEAD tools suite will check that the
types are conforming, but no guarantee is given on the semantics. It is up
to the designer to ensure that the prescribed composition of code artifacts
is meaningful for the domain.

– Resilience to Kernel Evolution. If we assume the closed-world assumption
that is common within software product lines, all the potential customiza-
tions and their possible interactions are known. Therefore an evolved kernel
can be organized in such way that any existing choice of features will con-
tinue to work as intended. This does not mean that upgradability comes
for free: the kernel developer must understand these interactions and handle
them.

– Support for Multiple Customizations. The product line is the family of classes
created by mixin composition. As noted before, the mixin approach requires
that mixins are not created in isolation, but rather carefully designed to-
gether, which basically assumes a closed world of possible customizations.
Therefore there is no support for independently developed customizations.

5.9 Software Product Lines Using Multi-dimensional Separation of
Concerns

The Hyper/J framework and tool developed by Tarr, Ossher and others at IBM
Research [30] support multi-dimensional separation and integration of concerns
in Java programs, which may be used to implement software product lines. A
Hyper/J prototype implementation [16] is publicly available, but is not currently
actively supported. In particular, the prototype does not seem to work with
the latest version of the Java runtime environment, which seriously limits its
usability. Hyper/J shares many goals with aspect-oriented programming, such
as the decomposition of software systems into modules, each of which deals with
a particular concern.

A dimension of concern is a class, a feature, or a software artifact. For exam-
ple, a class in a code base represents a class concern. Each dimension of concern
gives a different approach to software decomposition. Tarr and others coined the
term “the tyranny of the dominant decomposition” to signify that a program-
ming language typically supports only one (dominant) decomposition, such as
classes in case of object-oriented languages. Consequently some concerns cannot
be implemented in a modular manner, and the code fragments implementing
them will be scattered across the modules that arose from the dominant decom-
position [30, page 5]. For instance, logging (of method calls) is an example of
such as cross-cutting concern, often cited in aspect-oriented programming.

Using Hyper/J, decomposition can be done simultaneously along multiple di-
mensions of concern: The class is no longer the main decomposition mechanism
in an object-oriented language, putting class, package, and functional decompo-
sition on a more equal footing. The Hyper/J tool takes care of the interaction
across those different decompositions. The goal is to encapsulate into new mod-
ules those concerns that were previously scattered over the classes.

248 P. Sestoft and S. Vaucouleur

By combining selected concerns into a program, a programmer can create
a version of the software containing only selected features, even if the original
software system was not written with separation of features in mind [30].

Units are organized in a multi-dimensional matrix, where each axis is a di-
mension of concern, and each point on the axis is a concern in that dimension.
The main units in Hyper/J are functions, class variables, and packages. Concern
specifications are used to specify the coordinate of each unit within the matrix,
using the notation:

x: y.z

where x is a unit name, y a dimension and z a concern.
We now give a Hyper/J solution to the invoice example from section 5.6. Once

again there is a base implementation of Invoice, now in Java. The method
GrandTotal computes the sum of the items of the invoice, and another method
called GetTotal will return that total.

package lipari.base;
public class Invoice {
private double total;
public void GetTotal() {
return total;

}

public void GrandTotal() {
total = 10; // Dummy implementation

}
}

In another package, a developer defines a discount as a customization of the base
implementation by writing the following class:

package lipari.discount;
public class Invoice {
double total;

public double GrandTotal(double x) {
total = total * 0.95;

}
}

Note that the name used for the method and for the instance variable mimic the
ones from the base code, but the package name is different. The “one Euro tax
customization” can be specified similarly to the discount customization above,
in a separate package. Note that both the customizations and the base class can
be compiled completely independently.

A programmer can then compose the base code with the two customizations
by writing the following Hyper/J specification (some parts were omitted for
brevity). First, we specify the concerns:

Technologies for Evolvable Software Products 249

-concerns
package lipari.base : Feature.Base
package lipari.tax : Feature.Tax
package lipari.discount : Feature.Discount

In this case the mapping is simple since each concern is implemented by its own
package. Then we specify that we want to compose a software system, here called
LipariHypermodule, using the concerns specified above:

-hypermodules
hypermodule LipariHypermodule
hyperslices: Feature.Base, Feature.Discount, Feature.Tax;
relationships:
mergeByName;
merge class Feature.Base.Invoice,

Feature.Discount.Invoice,
Feature.Tax.Invoice;

end hypermodule;

Note the composition relationship mergeByName, which indicates that units in
different hyperslices that have the same name will be fused. Using the composi-
tion specification above, the tool can generate a new software system with the
selected features. The code below will correctly display the expected total, 10
Euros with a 5% discount, followed by a one Euro tax – that is, 10.5 Euros.

package lipari.base;
public class Main {

public static void main(String[] args) {
lipari.base.Invoice i = new lipari.base.Invoice();
i.GrandTotal();
System.out.println("Total = " + i.GetTotal());

}
}

– Need to Anticipate Customizations. Some foresight is required to identify the
dimensions of concern because they determine how concerns can be combined
into systems. It seems that concerns may be added to a dimension as needed.

– Control over Customizations. Types provide some protection against mean-
ingless compositions at design-time.

– Resilience to Kernel Evolution. If we have a closed-world assumption, simi-
larly to what was mentioned in section 5.8, the evolution of the kernel can
be done in such way that any existing choice of features continue to work.
Of course, the same constraints mentioned in section 5.8 apply here.

– Support for Multiple Customizations. Again as it was mentioned before, un-
der a close-world assumption there is no support for other independently
developed customizations other than those that could be foreseen when de-
signing the kernel.

250 P. Sestoft and S. Vaucouleur

Table 1. Summary evaluation of customization technologies. Legend: Need to An-
ticipate Customizations: (1) none, (2) customization points, (3) customization kinds.
Control over Customizations: (a) design-time control, (b) run-time control, (c) none.
Resilience to Kernel Evolution: (i) some resilience, (ii) restricted resilience, (iii) no
resilience. Support for Multiple Customizations: (I) for parallel development, (II) for
sequential development, (III) no support.

Technique Sec. Impl. Refs. Need to
Anticipate
Customiza-
tions

Control over
Customiza-
tions

Resilience to
Kernel
Evolution

Support for
Multiple Cus-
tomizations

Inheritance 5.1 C# [1] (2) (a) (ii) (II)

Inform.
hiding

5.2 C# [32,1] (2) (a) (ii) (III)

Param.
polymor-
phism

5.3 C# [1] (2) (a) (ii) (II)

Events 5.4 C# [1] (2) (a) and (b) (ii) (I)

Partial
methods

5.5 C# [1] (2) (a) (ii) (III)

Mixins,
traits

5.6 Scala [11,29] (2) (a) (ii) (I)

Aspects 5.7 Yiihaw [19] (1) (c) (iii) (I)

SPL using
AHEAD

5.8 AHEAD [5] (3) (a) (i) (III)

SPL using
MSC

5.9 Hyper/J [30] (3) (a) (i) (III)

AX layers 5.10 Dynamics [14] (1) (a) (iii) (II)

5.10 The Dynamics AX Layer Model

The source-code based layered customization models of Dynamics AX was de-
scribed in section 3.8. Here we just give a brief assessment of it for comparison
with the other technologies surveyed in the following sections.

– Need to Anticipate Customizations. There is no need to anticipate customiza-
tions, since any lower layer application element can be copied to a higher
layer and customized there.

– Control over Customizations. A customization can include any edits, so there
is no support for controlling customizations.

– Resilience to Kernel Evolution. The customizations are very fragile to base
program evolution; it is entirely up to the developer to identify what changes
need to be made to the customizations.

– Support for Multiple Customizations. The support is very good if the changes
are made sequentially, for instance, if a customized component is further
customized at a higher layer.

Technologies for Evolvable Software Products 251

5.11 Summary Evaluation

Table 1 summarizes the properties of the technologies surveyed.

6 Conclusion

We defined the upgrade problem as the conflict between customization and evo-
lution of flexible software products. We have presented the Dynamics enterprise
resource planning systems as prime examples of such software products, and dis-
cussed how they are structured and customized, underscoring that the upgrade
problem is a real one and the focus of much attention also in industrial contexts.

We then considered a number of software technologies and practices that
are traditionally used for customization and for creation of families of related
software systems. For each one, we have given a description, an example, and
an evaluation in relation to four criteria: need for foresight, control over cus-
tomizations, resilience to kernel evolution, and support for multiple independent
customizations.

A tentative conclusion of this investigation is that static aspects (in the Yiihaw
guise [18]) and traits offer good static correctness guarantees and good support
for independent customization. They fit well with the structure of Dynamics AX
(section 3.9) but rely too much on build-time software composition to fit well
with the development practices around the Dynamics NAV (section 3.6). Also,
they both require some foresight in defining the customization points, which
must be classes and methods, and they are rather fragile in case class names or
method names in the kernel are changed as a consequence of kernel evolution.

Software product lines offer some interesting potential to deal with the up-
grade problem but their closed-world assumption does not fit the domain of
enterprise resource planning (ERP) systems that we took for a case study here.
Such systems must be customizable to unforeseeable legislation and new business
models, and this poses additional upgrade challenges.

Acknowledgements. Thanks to the anonymous referees whose comments led to
many improvements and clarifications. This work is part of the project Designing
Evolvable Software Products, sponsored by NABIIT under the Danish Strategic
Research Council, Microsoft Development Center Copenhagen, DHI Water and
Environment, and the IT University of Copenhagen. For more information, see
http://www.itu.dk/research/sdg.

References

1. C# language specification. ECMA Standard 334 (June 2005)
2. Allen, E.: Object-oriented programming in Fortress. FOOL/WOOD 2007, (January

2007), http://www.cs.hmc.edu/
3. Allen, E., et al.: The Fortress language specification. Technical report, Sun Mi-

crosystems (March 2008), http://research.sun.com/projects/plrg/

http://www.itu.dk/research/sdg
http://www.cs.hmc.edu/
http://research.sun.com/projects/plrg/

252 P. Sestoft and S. Vaucouleur

4. Batory, D.: Feature oriented programming for product-lines. Slide set for tutorial,
OOPSL 2004, Vancouver, Canada (October 2004)

5. Batory, D.: Multilevel models in model-driven engineering, product lines, and
metaprogramming. IBM Systems Journal 45(3), 527–539 (2006)

6. Batory, D., Lofaso, B., Smaragdakis, Y.: JTS, tools for implementing domain spe-
cific languages. In: Fifth International Conference on Software Reuse, pp. 143–153
(1998)

7. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering
and Methodology 1(4), 355–398 (1992)

8. Batory, D., Singhal, V., Sirkin, M., Thomas, J.: Scalable software libraries. In:
SIGSOFT, pp. 191–199 (1993)

9. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Stateful traits and their formal-
ization. Computer Languages, Systems & Structures 34(2-3), 83–108 (2008)

10. Dittrich, Y., Vaucouleur, S.: Customization and upgrading of ERP systems. an em-
pirical perspective. Technical Report TR-2008-105, IT University of Copenhagen,
Denmark (March 2008)

11. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: A mech-
anism for fine-grained reuse. ACM Transactions on Programming Languages and
Systems 28(2), 331–388 (2006)

12. Eaddy, M., Aho, A.: Statement annotations for fine-grained advising. In: ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE
2006), Nantes, France, (July 2006)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

14. Greef, A., et al.: Inside Microsoft Dynamics AX 4.0. Microsoft Press (2006)
15. JSR-277 Expert Group. Jsr-277: Java module system. Technical report, Sun Mi-

crosystems (October 2006), http://jcp.org/en/jsr/detail?id=277
16. Hyper, J.: Home page, http://www.alphaworks.ibm.com/tech/hyperj
17. Software Engineering Institute.Software product lines,

http://www.sei.cmu.edu/productlines/
18. Johansen, R., Sestoft, P., Spangenberg, S.: Zero-overhead composable aspects for

.NET. In: Börger, E., Cisternino, A. (eds.) Software Engineering. LNCS, vol. 5316,
pp. 185–215. Springer, Heidelberg (2008)

19. Johansen, R., Spangenberg, S.: Yiihaw. an aspect weaver for .NET. Master’s the-
sis, IT University of Copenhagen, Denmark (February 2007), http://www.itu.dk/
people/sestoft/itu/JohansenSpangenberg-Aspects-2007.pdf

20. Kennedy, A., Russo, C.: Generalized algebraic data types and object-oriented pro-
gramming. In: OOPSLA, San Diego, California, October 2005, pp. 21–40 (2005)

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

23. Lehman, M.M.: Rules and tools for software evolution planning and management.
Annals of Software Engineering 11(1), 15–44 (2001)

24. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9), 1060–1076 (September 1980)

http://jcp.org/en/jsr/detail?id=277
http://www.alphaworks.ibm.com/tech/hyperj
http://www.sei.cmu.edu/productlines/
http://www.itu.dk/people/sestoft/itu/JohansenSpangenberg-Aspects-2007.pdf
http://www.itu.dk/people/sestoft/itu/JohansenSpangenberg-Aspects-2007.pdf

Technologies for Evolvable Software Products 253

25. Mens, T., Buckley, J., Zenger, M., Rashid, A.: Towards a taxonomy of software evo-
lution. In: International Workshop on Unanticipated Software Evolution, Warsaw,
Poland (April 2003)

26. Microsoft. Microsoft Dynamics AX. Homepage,
http://www.microsoft.com/dynamics/ax/

27. Microsoft. Microsoft Dynamics NAV. Homepage,
http://www.microsoft.com/dynamics/nav/

28. Mortensen, F.: Software development with Navision. Talk, ERP Crash Course,
University of Copenhagen, January 31 (2007),
http://www.3gerp.org/Documents/ERP

29. Odersky, M.: The Scala language specification, version 2.0. Technical report, École
Polytechnique Féderale de Lausanne, Switzerland (January 2007),
http://www.scala-lang.org/

30. Ossher, H., Tarr, P.: Hyper/J: multi-dimensional separation of concerns for Java.
In: ICSE 2001: 23rd International Conference on Software Engineering, Toronto,
Canada, pp. 821–822. IEEE Computer Society, Los Alamitos (2001)

31. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

32. Parnas, D.L.: On the design and development of program families. IEEE Transac-
tions on Software Engineering SE2(1), (1976)

33. Perlis, A.J.: Epigrams on programming. SIGPLAN Notices 17(9), 7–13 (1982)
34. Pontoppidan, M.F.: Smart customizations. Screen cast (2006),

http://channel9.msdn.com/Showforum.aspx?forumid=38&tagid=94
35. Prehofer, C.: Feature-oriented programming: A fresh look at objects. In: Aksit,

M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer,
Heidelberg (1997)

36. Rogerson, D.: Inside COM. Microsoft’s Component Object Model. Microsoft Press
(1997)

37. Stroustrup, B.: The C++ programming language. Addison-Wesley, Reading (2000)
38. D. Studebaker. Programming Microsoft Dynamics NAV. Packt Publishing (2007)
39. Tourwé, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolution para-

dox. In: AOSD 2003 Workshop on Software-engineering Properties of Languages
for Aspect Technologies, Boston, USA (2003)

http://www.microsoft.com/dynamics/ax/
http://www.microsoft.com/dynamics/nav/
http://www.3gerp.org/Documents/ERP
http://www.scala-lang.org/
http://channel9.msdn.com/Showforum.aspx?forumid=38&tagid=94

Security in Distributed Applications

Dieter Gollmann

Hamburg University of Technology

Abstract. The security requirements on an IT system ultimately de-
pend on the applications that make use of it. To put today’s challenges
into perspective we map the evolution of distributed systems security
over the past 40 years. We then focus on web applications as an impor-
tant current paradigm for deploying distributed applications. We discuss
the security policies relevant for the current generation of web applica-
tions and the mechanisms available for enforcing these policies, which are
increasingly to be found in components in the application layer of the
software stack. Descriptions of SQL injection, cross-site scripting, cross-
site request forgery, JavaScript hijacking, and DNS rebinding attacks will
illustrate the deficiencies of current technologies and point to some fun-
damental issues of code origin authentication that must be considered
when securing web applications.

Security is a moving target, propelled by the interplay between new technolo-
gies and the applications they facilitate. Today, most computers are connected
at least some of the time to one kind of communications network or another.
Many applications, from email to e-commerce, rely on this connectivity. In such
a setting IT security is distributed systems security. By the same measure, dis-
tributed systems security no longer defines a specialisation within IT security.
On the other hand, some of the topics that were once the focus of distributed
systems security research may no longer provide the answers to current chal-
lenges. To illustrate how the agenda in security has kept evolving, chapter 1 will
present a brief history of distributed systems security.

Security in distributed applications gives a better indication of the nature of
current developments, and also provides a convenient distinction between past
and present security concerns. Today, distributed applications increasingly make
use of web technologies, which themselves are subject to ongoing changes; chap-
ter 2 introduces the basics of the web computing paradigm. We will then ana-
lyze security issues that arise in the infrastructure created by web technologies.
Chapters 3 to 7 cover major attack patterns and suggest mechanisms and ar-
chitectural measures to counteract the threats observed. Chapters 8 summarizes
the fundamental issues in web applications security.

1 History of Distributed Systems Security

Our historical survey starts with the 1970s. For each decade we will identify a
defining technology, a beacon event, and the applications the technology was

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 254–276, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Security in Distributed Applications 255

put to at that time. We will then mention the major security policies derived
from those applications and the corresponding security mechanisms. As we are
progressing through the decades, we will specifically track developments in dis-
tributed systems security.

1.1 1970s – The Age of the Mainframe

The lead technology of the 1970s was the mainframe computer. Memory tech-
nology had advanced sufficiently to facilitate the automated processing of large
amounts of data, large at least for that time. For illustration, IBM’s Winchester
disk offered a capacity of 35-70 megabytes. Such mainframes were typically de-
ployed in government departments and in large companies. For our historical
perspective, two applications in public administration are significant.

The defence sector was moving classified data onto the mainframe. Classified
data are characterized by security labels such as ‘confidential’, ‘top secret’, and
the like. To answer questions about the security of processing classified data on
computers, the US Air Force created a study group that reported its finding in
the Anderson report [2] in 1972. This report is our beacon event from the 1970s.
The concerns voiced in the report still ring true today.

In recent years the Air Force has become increasingly aware of the prob-
lem of computer security. This problem has intruded on virtually any
aspect of USAF operations and administration. The problem arises from
a combination of factors that includes: greater reliance on the computer
as a data processing and decision making tool in sensitive functional ar-
eas; the need to realize economies by consolidating ADP resources thereby
integrating or co-locating previously separate data processing operations;
the emergence of complex resource sharing computer systems providing
users with capabilities for sharing data and processes with other users;
the extension of resource sharing concepts to networks of computers; and
the slowly growing recognition of security inadequacies of currently avail-
able computer systems.

Access to classified data was regulated by multi-level security policies as cap-
tured by the Bell LaPadula model (1973) [5], which remained highly influential
in computer security research throughout the 1980s.

The second application field were government departments dealing with
citizens, such as social services or tax authorities. The potential of unchecked
access and unchecked processing of personal data were perceived as serious pri-
vacy threats, and a diverse set of protection mechanisms emerged. In the legal
field, data protection legislation was introduced in the US and in a number
of European countries, later harmonized in the OECD privacy guidelines [18].
In statistical databases, countermeasures against aggregation and inference at-
tacks were developed, such as the randomization of query data (for more details
see [13]).

At the logical level, access to data stored on mainframes was subject to multi-
user security policies. Policy enforcement was the task of the operating systems,

256 D. Gollmann

see e.g. Multics [38] as a relevant project. Processor architectures provided sup-
port through primitives such as segmentation or capabilities [16]. For protecting
sensitive information from attackers with direct access to memory or to backup
media, encryption was seen as the most comprehensive solution. The US Federal
Bureau of Standards issued a call for a data encryption standard for the protec-
tion of sensitive but unclassified data, which eventually resulted in the adoption
of the DES algorithm [43].

Although we have not yet reached distributed systems security, we have
touched upon two developments that still have a major influence on today’s per-
ception of security. There is often an (implicit) assumption that access control
policies must refer to ‘known people’ [19]. This assumption can become an ob-
stacle when securing current IT architectures where access control can no longer
be based on user identities alone. We will elaborate this point in section 1.3.
Secondly, the DES call was the decisive event that triggered a public discussion
about encryption algorithms and gave birth to cryptography as an academic
discipline. Cryptographic mechanisms and protocols have since become essential
building blocks in distributed systems security.

There is one aspect of distributed systems security, however, that can be
traced back to this decade. When interactive access to a mainframe from a
remote terminal became possible, user authentication by password could be
compromised by an attacker with access to the link between terminal and main-
frame. To defend against spies on the network, Needham and Schroeder devel-
oped a cryptographic authentication protocol [35]. The Kerberos protocol builds
on their work and is today still one of the main choices for authentication in
distributed systems [36].

1.2 1980s – The Age of the Personal Computer

The lead technology of the 1980s is the Personal Computer (PC). The beacon
event is Apple’s famous launch of the Macintosh in 1984. As a single-user, single-
level, and initially as a stand-alone device, the PC had no need to enforce multi-
user or multi-level security policies, or to protect traffic to remote machines.
A typical PC application of that time therefore had no need for the security
mechanisms developed in the previous decade.

Linked to the rise of the PC, though, is a development in IT that intro-
duced security issues which have stayed with us. Software—distributed on floppy
disks—became a commodity. To have a viable business, software writers had to
protect their intellectual property. Copy protection was tried out as a technical
solution, opening an arms race between hackers and developers of copy protec-
tion methods. Copy protection, however, interfered with standard IT practices
such as keeping regular backups. In the end, the providers of mass market soft-
ware decided to rely on the legal system rather than on technology [24, page 59].
Digital Rights Management faces similar questions in our time.

Moreover, floppy disks infected with computer viruses became a new security
threat. Computers are extensible systems, but now the user—instead of a profes-
sional system manager—had to be aware of the implications of installing a new

Security in Distributed Applications 257

software component. The platform assumed that the user was up to the job and
provided no support. Anti-virus research had to find methods for detecting and
removing an ever growing number of computer viruses. These efforts might be
categorized as one of the first steps in the direction of software security.

We conclude our look at the 1980s by mentioning two developments that
extend the research of the previous decade. The Clark-Wilson model (1987) in-
troduced commercial application-level policies into security research [11]. Then,
there was further work on authentication in distributed systems investigating
alternatives to Kerberos and adding access control features. The Digital Dis-
tributed System Security Architecture is one prominent example for such an
effort [20]. By the end of the decade, distributed systems security was by and
large synonymous with the authentication and authorisation of remote users
within a single organisation, with some considerations for cross-authentication
between different domains (see e.g. [42]).

1.3 1990s – The Age of the Internet

The 1990s were truly the decade of the Internet. The Internet is of course much
older but in the early 1990s a number of developments coincided that led to
its rapid growth, and in particular to a range of new Internet applications. Our
beacon event is the decision by the NSF in 1991 to open the Internet to com-
mercial use. At the same time new technology became available, the HTTP
protocol providing the basis for visually more appealing applications than email
or remote procedure calls, and the World Wide Web (publicly available in 1991,
see http://www.w3c.org/WWW/) and graphical web browsers (Mosaic in 1993)
creating a whole new ‘user experience’.

The Internet is a communications system so it may be natural that there
was initially a strong focus on communications security and in particular on
strong cryptography. In the 1990s, the ‘crypto wars’ between the defenders of
(US) export restrictions on encryption algorithms with more than 40-bit keys
and advocates of strong encryption with keys long enough to thwart brute force
attacks was fought to an end, with the proponents of strong cryptography getting
the upper hand. Secure Socket Layer/Transport Layer Security [14] and IPsec
[30] are well designed security protocols from this decade. The standard way of
securing a distributed application was to run it on top of SSL.

Unfortunately, this only solves the easy problem, i.e. protecting data in transit.
It should have been clear from the start that the real problems resided elsewhere.
The typical end system on the Internet was a PC, no longer stand-alone or part of
a LAN, but connected to the world. When a machine is connected to the Internet,
the system owner no longer controls who can send inputs to this machine and
what is being sent as input. This has two major ramifications. Once there is no
well defined group of legitimate users, traditional multi-user security policies are
no longer applicable. In addition, an attacker may send intentionally malformed
inputs to an open port on the machine to exploit software vulnerabilities such
as buffer overruns, as made clear to the world by Aleph One in his paper on
“Smashing the Stack for Fun and Profit” (1996) [37].

258 D. Gollmann

These observations introduce two new classes of security policies. First, access
rights are now assigned to code instead of a user. The Java security model
assigned permissions to code according to the location it came from, rather than
referring to a user identity associated with the current process [23]. Code-based
access control is a new paradigm that was further developed in Microsoft’s .NET
framework [31]. The reference monitor enforcing those policies moved from the
operating system into the middleware layer (browser, .NET Common Language
Runtime). Secondly, developers have to define which inputs are legal and add
checks to their software that enforce policies on input. Typically, these checks
are performed in the applications themselves. We will return to this issue in
section 4.1.

Regarding novel applications, the security requirements of home entertain-
ment services using the Internet as a distribution channel, such as computer
games, video, and music had to be addressed. Digital Rights Management (DRM)
takes up a theme from the 1980s and adds a new twist to access control. For
the first time, access control does not aim at protecting the system owner from
external parties, but at enforcing a security policy of an external party that
regulates actions by the system owner. Again, content owners do not only rely
on technology but are frequently taking recourse to the legal system, either by
bringing civil actions against unauthorized distributors of their content, or by
lobbying for legislation prohibiting the reverse engineering of copy protection
mechanisms. As noted by Lessig [34], legal code and software code are just two
alternatives for enforcing desired behaviour.

Research on distributed systems security proper as we left it at the end of the
previous decade also moved on from identity-based access control. In distributed
systems, secure sessions were created using cryptographic protocols. Crypto-
graphic keys could be viewed as communication channels. Access requests arriv-
ing on such channels could then be associated with cryptographic keys, leading
to statements like:

In answering the question “is the key used to sign this request authorized
to take this action?”, a trust management system should not have to
answer the question “whose key is it?”. [17]

A theory of access control that incorporated both traditional concepts from
operating systems, such as access control lists, and new cryptographic concepts
such as public key certificates was developed in [1,32]. SPKI/SDSI [40] intro-
duced an approach for key centric access control. Trust management systems
like PolicyMaker [7] or KeyNote [6] added provisions for decentralizing policy
specification and policy decisions. Overall, cryptographic mechanisms permeated
access control ever more deeply.

1.4 2000s – The Age of E-Commerce

In the 1990s boundless expectations about the potential of e-commerce had
contributed to the dotcom boom. This bubble has burst but in the current decade
e-commerce has established itself firmly on the web. Companies like Amazon,

Security in Distributed Applications 259

eBay, and Google have become household names. Low fare airlines were among
the first in the travel sector to move to online booking systems. Hotels and
railways have followed. News media and search engines offer their services on
the web, generating their income from advertisements. Tax authorities provide
facilities for electronic filing of tax returns and for making payments online.

The technological basis for this development is on one hand progress in com-
munications, as broadband Internet and wireless communications have kept in-
creasing the connectivity of end users. On the software side, JavaScript, browser
plug-ins, or AJAX support more sophisticated transactions with web servers.

The attackers have changed with the application. A decade ago, hackers might
want to demonstrate their technical proficiency, but taking over a victim’s ma-
chine usually did not provide access to the victim’s bank account. In the age of
e-commerce, this is no longer true. Attacks with old fashioned financial motifs
compromising the victim’s secrets are on the rise.

The original protection mechanism for an e-commerce application was a ‘se-
cure’ SSL connection to the merchant’s server. An SSL connection protects the
confidentiality and integrity of data travelling through the Internet. This pro-
vides adequate security as long as the user’s end system and all the systems the
user connects to are well protected. This is the fundamental trust model when
relying on network security services for protecting an application. Trust is bad
for security [22] and the reader may note that in the early times of computer
security, a system was said to be ‘trusted’ if it could hurt you, i.e. users had
to take it on trust that nothing bad would happen. It is a risky strategy to
assume that all the parties we are dealing with in the web are benign and well
protected. Thus, we must abandon the trust model of network security and look
for mechanisms that protect the end systems.

The resulting security policies fall into three broad categories. First, a system
has to protect itself from being compromised by maliciously chosen inputs. This
policy connects us to our beacon event of this decade, Microsoft’s security push
in 2001 with its battle cry “don’t trust your inputs”. Software security had been
recognized as a major challenge for security in distributed systems. Secondly,
applications should be separated to mitigate the impact when one application
is compromised. Thirdly, permissions are often assigned to downloaded code on
the basis of code origin policies rather than on the basis of user identities.

Some attacks like phishing, be it by spoofing a trusted source or through
social engineering as in 419 mails, aim directly at the user and lure the victim
into revealing sensitive information to the attacker. User awareness and filters
identifying suspicious emails or web links are common countermeasures. These
defences at the interface between user and application are important, but will
not be discussed further.

A PC used by a single person for different applications (email, web brows-
ing, e-banking, tax filing, word processing, . . .) can be viewed as a collection
of special purpose machines, one for each application, all hosted on the same
platform. Pursuing this idea further, the PC could become a platform hosting
several virtual machines. The virtualization layer providing separation between

260 D. Gollmann

the virtual machines could thus be used to separate the applications. Research on
virtualization is undergoing a renaissance today. User Mode Linux (http://user-
mode-linux.sourceforge.net/), Xen [4], or KVM [39] are typical examples for this
approach, but beyond our focus on defences at the application layer.

2 Web Applications

The main infrastructure elements are the client browser, which has no name
other than the client’s IP address, the web server known by its domain name,
and a transport protocol comprising data formats and components for encoding
and decoding application payloads. The logic of a web application is implemented
at the web server and backend server. Figure 1 shows the basic information flow
in a so called Web 1.0 application. Client and web server communicate via the
HTTP protocol with HTML (and Cascading Style Sheets (CSS)) as the data
format. The client sends HTTP requests to the server. A script at the web
server extracts input from the client data and constructs a request to a backend
application server, e.g. a SQL query to a database. The web server receives the
result from the backend server and returns a result page to the client. The client’s
browser displays the result page.

‘Displaying a page’ is a misleadingly simple metaphor. In fact, the browser
renders the web page from input received from the web server and from input
stored locally and may execute scripts received in the web page (or even from
local data) in the process. The Domain Object Model (DOM) is the browser’s
internal representation of a web page [33]. When the browser receives an HTML
page it parses the HTML into the document.body of the DOM, whilst sub-
objects like document.URL, document.location, and document.referrer get
their values according to the browser’s view of the current page.

Incidentally, there is nothing like ‘the browser’. We are sometimes made to
believe that diversity is good for security, and there is indeed diversity between
browsers from different vendors and also between different versions of the same

�

user

page 1
2

� �
Browser

client
side

HTTP request

�

�
HTML & CSS data

Web Server

� �
Backend Server server

side

Fig. 1. Web 1.0 application

Security in Distributed Applications 261

product. Thus, developers of web applications face the challenge that they cannot
rely on all client browsers to provide exactly the same defence mechanisms.
All the attacks we will present were possible some of the time for some of the
browsers. In the following sections, we can only show generic attack patterns but
will not make statements that are necessarily true for every browser.

2.1 Sessions

HTTP is a stateless protocol. To link related messages, applications create ses-
sions. Sessions can be established in the HTTP layer or in the network layer, e.g.
using SSL. To establish an HTTP session, the server generates a session token
and transmits it in the first response to the client. The client includes this token
in subsequent requests to the server. Requests are authenticated as belonging to
a session if they contain the correct token.

The design of session management protocols does not assume the standard
threat model of communications security where the attacker is “in control of the
network” and can read, modify, delete, and insert messages. This ‘old’ secret
services threat model is (imprecisely) known as the Dolev-Yao model (after [15])
and sometimes as the Needham-Schroeder model, recognizing that [35] already
describes this attacker. In the new web threat model, the attacker is a malicious
end system. This attacker only sees messages addressed to him and data obtained
from compromised end systems, and can also guess predictable fields in unseen
messages. This imposes two requirements on session tokens. They should be
unpredictable, and they should be stored in a safe place. The three currently
deployed methods for transferring session tokens are:

– Cookies: A cookie is sent by the server in an HTTP response using the
Set-Cookie header field; the client browser stores it in document.cookie
and includes it in all requests with a domain matching the cookie’s origin.

– URI query strings: The browser includes a session identifier (SID) in the
query part of the Uniform Resource Identifier (URI) of an HTTP request.

– POST parameters: The browser puts the SID in a hidden field in an HTML
form.

As we will see later, these methods often do not meet our security requirements
on secure storage.

HTTP sessions need not be associated with a particular user. Such ‘anony-
mous’ sessions still provide a message authentication service, linking messages
to a given session rather than to a given user. If a user is authenticated when
the session is established, requests in the session can be associated with the
access rights of that user. Users could be authenticated via HTTP basic (not
recommended) or digest authentication, but also by the underlying operating
system.

2.2 Cookie Poisoning

Session tokens create distributed state between client and server. If these param-
eters are used for access control, they have to be kept secret from third parties,

262 D. Gollmann

but it must also be impossible for a malicious client to unilaterally alter a cookie
to gain privileges the user is not entitled to. For example, when a server uses
the cookie to store bonus points in a loyalty scheme, a client could increase the
score to get higher discounts. This attack is called cookie poisoning. To prevent
this, the server can protect the cookie with a message authentication code con-
structed from a secret only held at the server. The attacker could be a third
party that makes an educated guess about a client’s cookie, maybe after having
contacted the server itself, and then uses the spoofed cookie to impersonate the
client. Cookie stealing will be described in section 4.2.

2.3 Code Origin Policies

The client’s browser loads application pages and manages session tokens. Data
and session tokens of different applications should be kept apart. Web applica-
tions are identified by the domain of the web server hosting the application. The
same origin policy states that an applet may only connect back to the server it
came from or that a cookie is only included in requests to the domain that had
placed it. The precise definition of this policy does not matter for our exposi-
tion. The client’s browser enforces the same origin policy and provides separate
security contexts for different applications (Fig. 2, left).

To enforce code origin policies we must be able to authenticate the origin of
HTTP requests and responses. Web pages may include links to other pages. In
Fig. 2, right, let the client load a page from domain1 that contains a link to
domain2. When loading this page, the client’s browser will send a request to
domain2. Ideally, the server in domain2 would learn that this request came in
a link from a page in domain1. The Referer field in the HTTP request header
was introduced so that a client could specify the URI of the resource from which
a request was obtained. However, the Referer field is not always included and
might be forged so the access control system cannot rely on it. Moreover, the
response from domain2 will be linked to the page that issued the request, so the
DOM can become a stepping stone between domains.

security
context

security
context

DOM as
stepping stone

DOM

browser

............
...........
..........
...........
.......
........
...........

..............

.................

....................

.......................

.......................

....................

.................

..............
...........
........
.......

..
..........
..........
.
.............

............
..

............
......

............
.........

............
...........
.

............
............

............
.........

...........
......

............
..
...........�

�

domain2

............
...........
..........
...........
.......
........
...........
..............

.................

....................

.......................

.......................

....................

.................

..............
...........
........
.......
...........

..........
..........
.
..........................

............
..

............
.....

............
........

............
...........

............
...........

............
........

............
.....

............
..

...�

�

domain1

browser security
context

security
context

ideal
separation

...........
..........
...........
...........
.......
........
...........

..............

.................

................
.............
.........
........

...
...........
..........
.
...............

............
..

............
.....

............
....
............
.
.................�

�

domain2

...........
..........
...........
...........
.......
........
...........
..............

.................

................
.............
.........
........
............

...........

..........

.

..........................
............
..

............
.....

............
....

............
.

...�

�

domain1

Fig. 2. Code origin policies—abstraction and reality

Security in Distributed Applications 263

Listing 1.1. Constructing a SQL query from user input

St r ing username = reques t . getParameter (” username ”) ;
S t r ing password = reques t . getParameter (” password ”) ;
S t r ing query = ”SELECT ∗ FROM user s WHERE”
+ ” username = ’” + username + ” ’” +
” AND ” + ”passwd = ’” + password + ” ’ ” ;
Resu ltSet r s = statement . executeQuery (query) ;
i f (r s . next ()) {
// username and password match ; code to handle s u c c e s s f u l l o g i n
} e l s e {
// l og in f a i l s ; code to handle un su c c e s s f u l l o g i n
}

3 SQL Injection Attack

SQL code injection exploits vulnerabilities at the interface between the web
server and a backend database. The weakness exploited is a script at the web
server that creates a SQL query as a string composed from instruction fragments
and client input. The script in Listing 1.1 takes username and password as input
and constructs a string query that serves as input to the database system. With
username Bob and password 2Skewl the query string constructed would be

SELECT * FROM users WHERE username = ’Bob’ AND passwd = ’2Skewl’

and if such a user with this password exists in the table users, a non-empty row
would be returned and processing would continue. However, when an attacker
enters username whocares and password noone’ OR ’1’ = ’1 the WHERE clause
in the query becomes

WHERE username = ’whocares’ AND passwd = ’noone’ OR ’1’ = ’1’

and (username = ’whocares’ AND passwd = ’noone’) OR ’1’ = ’1’ evalu-
ates to TRUE as 1=1 is true, as is the disjunction of any statement with a true
statement. The potential impact of SQL injection attacks goes beyond bypassing
checks in WHERE clauses. Attackers might append their own commands to user
input and, for example, execute stored procedures on the database server.

The problem in this sample web application is twofold. First, the SQL query is
constructed as a string from instruction fragments and user input after the user
input has been provided. Hence, what is inserted as user input may later be in-
terpreted as SQL code. Secondly, there are no checks on user input. Accordingly,
the defences fall into two categories.

– Remove the root of the problem by changing the execution model so that
SQL queries are constructed before the user input is added. This can be
achieved with bound parameters (DBI placeholders in Perl); the script is
first compiled with placeholders instead of the user input; on execution of
the compiled script, the placeholders are replaced by the actual user input.

264 D. Gollmann

– Mask the problem, by applying filters to either block or modify user input.
These defences are typically applied in the web applications. We defer a
discussion of these solutions to section 4.1.

As a footnote to this discussion of SQL injection attacks, note that helpful—
or should one say verbose?— error messages may reveal valuable information
about the internal structure of the database to an attacker.

4 Cross-Site Scripting

A cross-site scripting (XSS) attack executes malicious code at the client after
passing the code through a site trusted by the client. Hence, the attacker’s code
runs with the permissions attributed to code from the trusted site evading the
client’s origin based security policy. In a reflected XSS attack (figure 3) the victim
has to be lured into visiting a page hosted by the attacker. The page hides a
script in a link to the trusted server. The following example is taken from [9].

<A
HREF="http://example.com/comment.cgi?
mycomment=<SCRIPT SRC=’http://attacker.org/badfile’></SCRIPT>">
Click here

When an unaware victim clicks on this link, the URL sent to example.com in-
cludes the malicious code. If the web server echos the value of mycomment in
the result page without any further filtering or encoding, the malicious code gets
executed on the client within the page from the trusted server. Typical examples
for applications that echo client input are search engines or custom 404 pages.

In a stored XSS attack, the malicious code is placed directly at the trusted
site by the attacker. A bulletin board is a typical application where this might

client

3. result page with
embedded script

... �

1. page
click

.
.......................

.
.. �4. stolen cookie

	

.
..

...
..

.......................................
...................................

................................
.............................

..........................
.......................

....................
.................

..............
...........
..........
.........
........
.........
..........
.............
................

...................
.....................

........................
...........................

2. tag or form with
embedded script

trusted site

attacker.org

Fig. 3. Reflected cross-site scripting vulnerability with cookie stealing

Security in Distributed Applications 265

be possible. When a victim visits the attacker’s entry in the bulletin board, the
code embedded in the entry may be executed at the client.

The prerequisite for DOM based XSS is a web page at the trusted server that
will reference an object in the DOM, e.g. document.URL, when being processed
by the browser. The attacker can then insert malicious code in the DOM object.
In the attack, the victim is tricked into visiting the attacker’s web page that
contains a link to a suitable page on the trusted server. The malicious code
is placed in the URL of that page. When the user visits the attacker’s page,
the client’s browser stores the bad URL in document.URL and sends a request
following the link to the trusted server. When the result page is returned, it will
reference document.URL. In this way the attacker’s code will also be executed.

4.1 Defending against XSS

The fundamental reason for the client’s failure to enforce its code origin policy is
the fact that it can just check the origin of the web page it downloads, but not the
true origin of all the data within it. We thus face a situation where the browser
should enforce a code origin policy without being able to authenticate the origin
of all its inputs. We could then change the execution model by disabling the
execution of scripts at the browser. If this restriction is too drastic, the only
other defence left is to eliminate all code from input parameters. The client can
filter its inputs and the server can sanitize its outputs. We have two basic options
for validating parameters:

– White lists, only allowing ‘good’ values.
– Black lists, blocking all ‘dangerous’ values like <, >, &, =, %, :, ’, ”.

The inherent problem with black lists is completeness. The list has to include
all possible escape characters. It has to cover all encodings of escape characters
a browser will accept, e.g. illegal but syntactically correct UTF-8 encodings or
the more obscure UTF-7 format, and it has to include all characters a help-
ful browser might turn into escape characters. Some browsers convert language
specific characters to similar looking ASCII characters. E.g., Unicode characters
2039 (single left quote in French) and 304F (Hiragana character ‘ku’) could be
mapped to <.

White lists appear safe and simple, but only at first glance. Consider a bul-
letin board application that accepts alphanumerical characters only. As long as
users just post plain text messages everything is fine. Once they try to discuss
mathematics exercises they will find that a < b is an illegal input. There are
likely to be problems with languages using special characters, and users could
not use image tags to post their latest holiday snaps.

Illegal characters can be removed or replaced by a safe encoding. For example,
HTML encoding replaces < by <, > by >, and & by &. A script
creating SQL statements must not allow single quotes in user input. The script
could replace single quotes by double quotes. This stops attacks that insert
code in string inputs, but not attacks that insert code in a variable where, say,

266 D. Gollmann

an integer is expected. This method would not work either if legal inputs may
contain a single quote, e.g. in a name like d’Hondt. The script could escape single
quotes, i.e. use a special character sequence as representation. In SQL, the single
quote is prefixed with a backslash, i.e. d’Hondt becomes d\’Hondt.

Escaping can have surprising side effects. The following example is due to
Chris Shiflett1 In the GBK character set for Simplified Chinese, 0xbf27 is not a
valid multi-byte character; as single-byte characters, it is 0xbf followed by 0x27
(’). Adding a backslash in front of the single quote gives 0xbf5c27. This is the
valid multi-byte character 0xbf5c followed by a single quote. The single quote
has not been escaped when the byte string is interpreted in GBK.

Filtering works well when valid or illegal inputs can be characterized by clear
rules, preferably expressed as regular expressions. When a PHP script expects
an integer input, for example, is numeric() can check that the input is indeed
an integer. Once a filter should support a wider range of applications, or once
an application should provide a richer user experience, it becomes increasingly
difficult to find such clear rules. Input validation often has to be performed in
the application. To check whether an application checks all its inputs—but not
whether the checks are the right ones—taint analysis traces data flow in an
application from untrusted sources of input to security sensitive operations and
checks whether every flow includes a sanitizing step.

4.2 Cookie Stealing

Web cookies are stored at the client in document.cookie. A cookie should only
be included in requests to the domain that had set the cookie. In a reflected
XSS attack, the attacker’s script executing on the client may read the client’s
cookie from document.cookie and send its value back to the attacker. This
does not violate the same origin policy as the script is executed in the context
of the attacker’s web page. The attacker could impersonate the client without
ever obtaining the cookie by sending an XMLHttpRequest object to the client
that places GET or POST requests to the web server, which will be sent in the
client’s current session with the server.

A web page vulnerable to XSS can be exploited to capture data from other
pages in the same domain, which need not be vulnerable to XSS. The script
launched in the XSS attack would open a window linked to the page of interest
in the client’s browser. This can be done via a page that takes over the entire
browser window and opens an inline frame to display the target page, or via a
pop under window that sends itself to the background but defines a link to the
target page. In both cases, the rogue window is not visible to the user but has
access to the DOM of the target page and can monitor the user’s input.

A careful user can protect the cookie by utilizing the browser’s security policy,
e.g. by putting the visited web page in a zone that is not given permission to
access document.cookie. Alternatively, we could utilize the same origin policy

1 http://shiflett.org/blog/2006/jan/addslashes-versus-
mysql-real-escape-string

Security in Distributed Applications 267

by putting the cookie in a separate domain, e.g. in domain secure.example.org
for a server in www.example.org, and modifying the execution flow when loading
a page. When the client requests a page, the server replies with an unpredictable
identifier and a page loader that causes the client’s browser to send the cookie and
the request for the page in separate requests, which are linked by the identifier.
When setting a cookie, the page loader must finish setting the cookie before
processing the HTML body (which may contain malicious code). Otherwise a
malicious script could observe the page loader and capture the cookie [26].

To protect data entered on other pages we could apply the same origin policy
with a finer level of granularity, creating a new subdomain for every page loaded
from the web server. Hence, when the attacker opens a new window linked to
a target window, the attacker’s window would be in a different subdomain and
could not monitor user activity in the target window [26].

Unpredictable one-time URLs sent by the server during session establishment
to the client, where they are stored in private variables of a JavaScript object,
can be used to authenticate requests as coming directly from the client [26]. An
attacker would have to guess the URL correctly to form a request that would be
accepted by the application.

5 Cross-Site Request Forgery

A cross-site request forgery attack (XSRF, also cross-site reference forgery) ex-
ecutes malicious code at a target website with the privileges of a ‘trusted’ client
[8]. In this context, trust translates into an authenticated session between client
and web server. For the attack it is immaterial how the session was estab-
lished, whether by SSL, by password-based HTTP authentication, or by any
other means. What matters is that requests within this session are executed
with security permissions attributed to the client.

In a reflected XSRF attack the client has to visit the attacker’s webpage,
which contains hidden code, e.g. in an HTML form, that includes actions at

trusted
client

.
..............
..........
.....................
..........
..........
...

..........

...

...............................
..........
..............

authenticated session

.

..............

..........

.....................
..........
..........
...

..........

...

...............................
..........
.............. ..

......... �

3. malicious action
reflected to target

�
2. page click

�

.
......................................

...................................
................................

.............................
..........................

.......................
....................
.................
..............
.............
............
..........
..........
...........

............
.............

................
...................

......................
.........................

............................
...............................

..................................
....................................

1. page with
embedded
links to target

target site

attacker.org

Fig. 4. Stored cross-site request forgery attack

268 D. Gollmann

the target web site. Simultaneously, the client must have established an active
session to the target site. When the user visits the attacker’s page, the browser
automatically submits the form data to the target with the token of the current
session. The target authenticates the request as coming from the client and the
form data is accepted by the server since it comes from a legitimate user. Thus,
XSRF evades the target’s origin based security policy.

In a stored XSRF attack the malicious code is stored directly with the appli-
cation. When a client requests an application page that contains the attacker’
s code, the code directs the client’s browser back to the application and ac-
tions inserted by the attacker are executed as coming from the client (Fig. 4).
Stored XSRF attacks have a good chance to succeed as the client requesting
the malicious page is likely to be authenticated and authorised to perform the
actions.

The fundamental reason why the target fails to enforce its code origin policy
is the fact that its authentication of the origin of an action only covers the
last stage but does not necessarily capture the true source. To defend against
XSRF, actions have to be authenticated properly. Authentication requires a
secret shared by client and server. This secret can be sent (in the clear!) by the
server when the session is being established. In our threat model, a secret cannot
be compromised in transit but only at vulnerable end systems. It is thus essential
that secrets are stored in locations not accessible to scripts executing within the
browser. If a page is vulnerable to XSS, authentication can be compromised.

The client constructs an authenticator derived from the shared secret. In in-
creasing degree of sophistication, the authenticator could be an unpredictable
session token used by all actions in the session, different actions could use their
own authenticators, or the authenticator could be a cryptographic message au-
thentication code (MAC) for the action as in

XSRFPreventionToken = HMAC(Action Name+Secret, SessionID).

The client’s browser sends the authenticator with the action. In a GET re-
quest, the authenticator is inserted as a token in the URI (a.k.a. URI rewriting).
In a POST request, the authenticator would be sent in a hidden form field. The
server authenticates any action request before execution. An attacker who has
no knowledge of the secret would be unable to form legitimate action requests. In
summary, action requests are authenticated at the level of the web application,
i.e. in a layer ‘above’ the browser. Cookies are therefore not suitable for storing
and transmitting the authenticator; they are sent automatically by the browser
and may be stored beyond the duration of the session.

In practice, POST gives better security as its parameters are not saved by the
browser and do not appear in web server logs. With URI rewriting, an unaware
user who wants to inform others about a particular link, e.g. by copying the URI
from the location bar and pasting it into a forum post, might become a security
risk if a reusable authenticator is thus disclosed.

Request authentication is initiated by the server. A client-side only defence
for HTTP sessions is described in [28]. A proxy is placed between browser and

Security in Distributed Applications 269

network. This proxy authenticates the origin of requests sent by the client. It
marks all URIs in incoming web pages with an unpredictable token and keeps
a database associating tokens with domains. The proxy also checks all outgoing
requests for the presence of a token. If a token is found, the request did not orig-
inate in the client and the proxy checks whether its origin matches the domain
the request is sent to. If this is not the case, all authenticators (SIDs, cookies)
added by the browser are stripped from the URI. This defence does not work
when an authenticated SSL session has been established at the network layer.

6 JavaScript Hijacking

The next attack makes use of new features of the Web 2.0 technology. The aspects
relevant for our discussion are all linked to an increased use of JavaScript at
the client. AJAX (Asynchronous JavaScript and XML) facilitates asynchronous
interactions between client and web server. The client’s browser sends JavaScript
requests to an AJAX engine, which handles the communication between client
and web server as shown in figure 5. The AJAX engine may perform actions
automatically without involving the user.

JSON (JavaScript Object Notation) is a new data format for data transport.
A JSON string is a serialized JavaScript object, which JavaScript turns back into
an object by calling eval() with the JSON string as the argument. The object
is created using the JavaScript object constructor; eval does not perform any
security or sanity checking. Finally, the dynamic script tag mechanism gives the
web server an opportunity to manipulate the client’s DOM.

JavaScript hijacking is related to XSRF, but discloses confidential data from
the server site to the attacker [10]. The first phase of the attack follows the pat-
tern of XSRF. The user has to visit the attacker’s web page and simultaneously

�

Browser

Javascript
�

�HTTP & CSS data

AJAX Engine

client
side

HTTP
request

�

�
XML data
JSON

Web Server

� �
Backend Server server

side

Fig. 5. Web 2.0 application

270 D. Gollmann

trusted
client

2. result page
with secret value

.

..............

..........
.....................
..........
..........
...

.........

....

...............................
..........
..............

authenticated session

.
..............
..........
.....................
..........
..........
...

.........

....

...............................
..........
..............

.
.....................

...
..................

...
................
..

.............
.

............
.

...........
.
...........
...........
............
.............
................ �
3. secret value

..
..

...
..

...
......................................

...................................
................................

.............................
..........................

.......................
....................

.................
..............

...........
..........
.........
.........
..........
...........
.............
................

...................
......................�

1a. script
overriding

constructor

	

.
...

...

..

...

......................................

..................................

...............................

............................

.........................

.....................
..................

...............
.............
...........
..........
.........
.........
..........
.............
................

...................

1b. link with
request for secret

target site

attacker.org

Fig. 6. JavaScript hijacking attack

have an authenticated session with the target server. The attacker’s page in-
cludes a script that redefines a JavaScript constructor in the client’s browser
(step 1a in Fig. 6, more of that later) and a link with a request to the target
server (step 1b). The request asks for secret data the user is authorised to access.
When the user clicks on a link to the attacker’s page, the client browser will send
the request to the target site using the client’s current session tokens, e.g. the
client’s cookie. This request will be authenticated as coming from a legitimate
user and the secret data are returned to the client (step 2).

The second phase of the attack transfers the secret data from the client to the
attacker. It relies on the browser allowing native JavaScript constructors to be
overridden. In the attack described in [10], the attacker’s page contains a script
that redefines the JavaScript object constructor in the client’s browser. When the
JSON arrives in the result page from the target site, it will be evaluated by the
browser and a JavaScript object will be created by the modified constructor that
sends the secret data on to the attacker (step 3). As the execution is performed
in the context of the attacker’s web page, sending the secret data to the attacker
does not violate the client’s same origin policy.

The defences against the first phase of the attack are the same as for XSRF.
To defend against the second phase, one can change the execution flow at the
client. For this purpose, the server has to modify the JSON that it returns so
that it will not be directly executed by the browser but has to be processed
by the requesting application before. The server could, for example, prefix each
message with a while(1); statement causing an infinite loop. The application
has to remove this prefix to run the code in the message, but now the execution
would be performed in the context of the application. Alternatively, the server
could put the message between comment characters, which are then removed by
the application. In both cases the secret is processed at the client in the context
of the application. The malicious web page cannot remove the block.

A mashup is a web application that combines content from multiple web
sites. Applications intended for use in a mashup may invoke a callback function

Security in Distributed Applications 271

at the end of JavaScript messages. The callback function is typically defined by
another application in the mashup. An attacker can use this feature and use the
callback function to launch the malicious code on the client. As noted in [10],
an application can be mashup-friendly or it can be secure, but it cannot be both.
Mashups are certainly at odds with the same origin policy.

7 DNS Rebinding Attack

To send a request to a web server, the client browser needs an IP address, which
it gets from an authoritative DNS server for the server’s domain. DNS servers
resolve ‘abstract’ DNS names in their domain to ‘concrete’ IP addresses. Thus,
the client’s browser ‘trusts’ the DNS server when enforcing the same origin policy.
Trust is bad for security, as it can be abused. In a DNS rebinding attack, the
attacker puts malicious code requesting a connection to the target in a web page
in his domain attacker.org. The attacker’s DNS server is authoritative for this
domain and binds attacker.org to two addresses, viz. to the attacker’s and to the
target’s IP address. When a client visits the attacker’s page, the client’s browser
has a valid binding between attacker.org and the target’s IP address and will
allow the malicious code to connect to the target. As a defence, the same origin
policy is made to refer to the IP address instead of the domain name [12].

DNS rebinding can also exploit the dimension of time [41]. When the client
first visits attacker.org the attacker’s DNS server resolves this host name to
the attacker’s IP address but with a short time-to-live. Then, attacker.org is
rebound to the target’s address. The script on the attacker’s page asks for a
connection to attacker.org after a delay. The binding of the host name at the
client’s browser finds has expired, so the authoritative DNS server is asked again.
Now, attacker.org is resolved to the target’s address. As a defence, do not trust
the DNS server on time-to-live but let the browser maintain its own time-to-live
for bindings between host names and IP addresses. This is known as pinning.

The attacker might circumvent pinning by making its web server unreachable
after the page has been loaded. This can be achieved by dynamic firewall rules
that block access from the client or by shutting down the web server. When
the malicious script loads a page from attacker.org the browser’s connection
attempt fails and the pinning may be dropped. When the browser performs a
new DNS lookup it is given the target’s IP address [27]. This is an instance of
a more widespread problem in security: Error handling procedures implemented
without due consideration of their security implications.

Plug-ins extend the browser’s functionality but can introduce new DNS re-
binding vulnerabilities [25]. Plug-ins doing their own pinning create a dangerous
constellation: The client browser provides a communication path between plug-
ins but each plug-in has its own pinning database. An attacker may use the
client’s browser as a proxy to attack the target by having attacker.org resolved
to the attacker’s IP address by one plug-in and to the target’s IP address by
another. The use of one pinning database for all plug-ins would be a defence.

272 D. Gollmann

More sophisticated authorisation systems have been introduced, where the
client browser refers to a policy obtained from the DNS server when deciding
on connection requests. This re-opens the original problem. The attacker’s DNS
server defines which IP addresses applets from attacker.org are authorized to
send requests to, and can nominate the target’s IP address in this policy. As a
defence, the client browser might not only ask the DNS server of the domain the
page was loaded from, but also the host at the receiving end to check whether
it agrees to be associated with attacker.org. This could be implemented as an
extension of reverse DNS lookup [25]. There exist parallels to defences against
bombing attacks in mobility and multi-homing network protocols [3]. Attacks
against internal targets can be prevented by refusing to bind external host names
to internal IP addresses.

8 Conclusions – Know Thyself!

The web has become a key platform for distributed applications. Data processed
by these web applications has to be protected from unauthorised disclosure and
modification. Applications may know about authorised users and perform user
authentication at the start of a session. The challenges of defining and enforcing
policies based on user identities in federated environments map out an interesting
research area, but are outside the scope of this paper. We have investigated the
platform provided by current web technologies and asked whether it can support
secure deployment of the applications that now run on it. This infrastructure
does not know about users but about domain names and IP addresses. It contains
mechanisms for enforcing code origin policies. For example, web servers base
decisions on the origin of actions, whilst client browsers identify an application
by the domain name of its server component. Once code origin policies are being
used, code origin has to be authenticated. This raises several questions.

What is code origin in the first place? Is it the user, is it the application object
running at the client, is it the respective middleware, i.e. the client’s browser or
a web server (program) known by its domain name, or is it the IP address of
client and server (machine)? XSRF shows that authenticating the client at the
level of the browser is insufficient to protect the application.

How, and at which layer can we authenticate code origin? We have to know
how an authentication protocol works, but also what it achieves. Finding the
meaning of authentication has proven elusive in security research. The traditional
explanation that authentication tells you “whom you are talking to” belongs
to an earlier period of distributed systems security and can be a barrier for
understanding security today. Nikander has made the point that identifier comes
from Latin identidem, meaning “the same as before”. This fits well with policies
demanding that all actions in a transaction originate from the same client that
had started the transaction, or that all content in a web page originates from the
same server. We have argued in [21] that authentication provides unforgeable
bindings between elements in the communications infrastructure and entities
at higher protocol levels. In this sense, a session token is a unique temporary

Security in Distributed Applications 273

identifier created by the server for an unnamed client. An action is authenticated
by verifying its binding to a session token. User authentication at the start of a
session links a session token to a user identifier. Thus, an action authenticated
in a session can be transitively associated with a user.

How can we protect the data used to authenticate code origin? In the web
threat model the main concern is compromise of secrets in vulnerable end sys-
tems. Often, the security mechanisms used to enforce code origin policies have
to protect the very secrets used for authentication. Compromise of code-origin
authentication can successively unravel other layers of authentication.

What is to be done when code origin cannot be authenticated? When a web
page contains parts from several sources that cannot be authenticated individ-
ually, code inserted as input data to a web page can be executed in a wrong
context. In this situation, the client can either make sure that at least locally
generated actions can be authenticated, or the client can filter the result pages
received from the server—and the server can sanitize its output to the client—to
stop data being erroneously executed as code.

Who sets the policy? This question is particularly pertinent if a policy asso-
ciates identifiers at different layers. The maxim “don’t trust your inputs” also
applies to policies received from others. When binding a domain name to an IP
address the browser could trust itself by pinning the IP address to a good value,
and it could exercise caution by confirming the binding received from the DNS
server with the host whose IP address had been given.

What type of code origin policies should be enforced? The simple same origin
policy was the first to be widely adopted. Strict observation of this policy implies
that there can be no interaction between applications. This is too restrictive for
the type of applications developed today and we need a policy framework that
can specify which interactions are legitimate. Standardization of HTTP access
control headers fore cross-domain policies is under way [44]. As a second example,
AJAX cross-domain policies, as shown in the following example, specify which
other domains are authorised to access application data.

<cross-domain-policy>
<allow-access-from domain="*.website1.com"/>
<allow-access-from domain="*.website2.com"/>
</cross-domain-policy>

Who is in charge of enforcing the policy? Responsibilities are divided between
the client’s browser, the web server application, the transport protocol for web
content, and the web pages themselves. Browser and server run authentication
protocols between them and can perform checks on the data being exchanged.
Web pages can validate the inputs they receive to block malicious inputs from
entering the application, and transport protocols can be specified so that they
cannot deliver malicious input to the client. When sessions are secured with SSL,
even network layer entities at client and server get involved.

We have sketched the status quo in securing web applications without at-
tempting to give a complete taxonomy of all current types of attacks. As a

274 D. Gollmann

recurring theme, problems arise because standard web authentication mecha-
nisms only cover the last stage of an action request but a client browsing a page
on one server can be a stepping stone for a request to another server. Frequently,
the problem is solved when an entity can at least ‘recognize itself’, e.g. when a
web server recognizes its own session token or when an anti-XSRF proxy dis-
tinguishes between request generated locally from requests received from others.
There is a parallel to return routability in the Mobile IPv6 protocol [3,29].

Describing solutions for these problems at a conceptual level is fairly straight-
forward but the software architecture keeps changing, introducing new policy
options and on occasion blurring the separation between layers (plug-ins), so
watertight implementation of these solutions is difficult. We conclude with a
general observation on security:

Security is a strange field; it is often easier to solve a problem in general
than solving concrete instances.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Sys-
tems 15(4), 706–734 (1993)

2. Anderson, J.: Computer security technology planning study. Technical Report 73-
51, U.S. Air Force Electronic Systems Technical Report (October 1972)

3. Aura, T., Roe, M., Arkko, J.: Security of Internet location management. In: Pro-
ceedings of the 18th Annual Computer Security Applications Conference, pp. 78–87
(December 2002)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pp. 164–177 (2003)

5. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations
and model. Technical Report M74-244, The MITRE Corporation, Bedford, MA
(May 1973)

6. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote Trust-
Management System Version 2, RFC 2704 (September 1999)

7. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceed-
ings of the 1996 IEEE Symposium on Security and Privacy, pp. 164–173.

8. Burns, J.: Cross site reference forgery. Technical report, Information Security Part-
ners, LLC, Version 1.1 (2005)

9. CERT Coordination Center. Malicious HTML tags embedded in client web requests
(2000),
http://www.cert.org/advisories/CA-2000-02.html

10. Chess, B., O’Neil, Y.T., West, J.: JavaScript hijacking. Technical report, Fortify
Software (2007)

11. Clark, D.R., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: Proceedings of the 1987 IEEE Symposium on Security and
Privacy, pp. 184–194 (1987)

12. Dean, D., Felten, E.W., Wallach, D.S.: Java security: from HotJava to Netscape
and beyond. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pp. 190–200 (1996)

http://www.cert.org/advisories/CA-2000-02.html

Security in Distributed Applications 275

13. Denning, D.E.: Cryptography and Security. Addison-Wesley, Reading (1982)
14. Dierks, T., Rescorla, E.: The TLS protocol – version 1.1, RFC 4346 (April 2006)
15. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions

on Information Theory IT-29(2), 198–208 (1983)
16. Fabry, R.S.: Capability-based addressing. Communications of the ACM 17(7), 403–

412 (1974)
17. Feigenbaum, J.: Overview of the AT&T Labs trust-management project. In: Chris-

tianson, B., Crispo, B., Harbison, W.S., Roe, M. (eds.) Security Protocols 1998,
vol. 1550, pp. 45–50. Springer, Heidelberg (1999)

18. Organisation for Economic Co-operation and Development. OECD Guidelines on
the Protection of Privacy and Transborder Flows of Personal Data (December
1980) (republished, February 2002)

19. Gasser, M.: The role of naming in secure distributed systems. In: Proceedings of the
CS 1990 Symposium on Computer Security, Rome, Italy, pp. 97–109 (November
1990)

20. Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The Digital distributed sys-
tem security architecture. In: Proceedings of the 1989 National Computer Security
Conference (1989)

21. Gollmann, D.: Authentication by correspondence. IEEE Journal on Selected Areas
in Communications 21(1), 88–95 (2003)

22. Gollmann, D.: Why trust is bad for security. Electronic Notes on Theoretical Com-
puter Science 157(3), 3–9 (2006)

23. Gong, L.: Inside Java 2 Platform Security. Addison-Wesley, Reading (1999)
24. Grover, D. (ed.): The protection of computer software - its technology and appli-

cations, 2nd edn. Cambridge University Press, Cambridge (1992)
25. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from

DNS rebinding attacks. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security, pp. 421–431 (2007)

26. Johns, M.: SessionSafe: Implementing XSS immune session handling. In: Gollmann,
D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 444–460.
Springer, Heidelberg (2006)

27. Johns, M.: (Somewhat) breaking the same-origin policy by undermining DNS pin-
ning. Posting to the Bug Traq Mailinglist (August 2006),
http://www.securityfocus.com/archive/107/443429/30/180/threaded

28. Johns, M., Winter, J.: RequestRodeo: Client side protection against session rid-
ing. In: Piessens, F. (ed.) Proceedings of the OWASP Europe 2006 Confer-
ence,Departement Computerwetenschappen, Katholieke Universiteit Leuven, Re-
port CW448, May 2006, pp. 5–17 (2006)

29. Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6. RFC 3775 (June
2004)

30. Kent, S., Seo, K.: Security architecture for the Internet protocol, RFC 4301 (De-
cember 2005)

31. Macchia, B.A.L., Lange, S., Lyons, M., Martin, R., Price, K.T.: .NET Framework
Security. Addison-Wesley, Reading (2002)

32. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: Theory and practice. ACM Transactions on Computer Systems 10(4),
265–310 (1992)

33. Hégaret, P.L., Whitmer, R., Wood , L.: Document object model (DOM). W3C
Recommendation (January 2005), http://www.w3.org/DOM/

34. Lessig, L.: Code and other laws of cyberspace. Basic Books (1999)

http://www.securityfocus.com/archive/107/443429/30/180/threaded
http://www.w3.org/DOM/

276 D. Gollmann

35. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM 21, 993–999 (1978)

36. Neumann, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authen-
tication Service (V5), Internet RFC 4120 (July 2005)

37. One, A.: Smashing the stack for fun and profit. Phrack Magazine, 49 (1996)
38. Organick, E.I.: The Multics System: An Examination of Its Structure. MIT Press,

Cambridge (1972)
39. Qumranet. KVM - kernel-based virtualization machine. White Paper (2006)
40. Rivest, R., Lampson, B.: SDSI – a Simple Distributed Security Infrastructure.

Technical report (1996),
http://theory.lcs.mit.edu/∼cis/sdsi.html

41. Roskind, J.: Attacks against the Netscape browser. In: RSA Conference (April
2001)

42. Steiner, J.G., Neuman, C., Schiller, J.I.: Kerberos: An authentication service for
open network systems. In: Proceedings of the Winter 1988 Usenix Conference
(February 1988)

43. U.S. Department of Commerce, National Bureau of Standards. Data Encryption
Standard, NBS FIPS PUB 46 (January 1977)

44. van Kesteren, A.: Access control for cross-site requests. W3C Working Draft
(February 2008),
http://www.w3.org/TR/access-control/

http://theory.lcs.mit.edu/~cis/sdsi.html
http://www.w3.org/TR/access-control/

Author Index

Baresi, Luciano 131
Batory, Don 39
Benatallah, Boualem 116
Bianculli, Domenico 131
Börger, Egon 59

Galilei, Giacomo A. 161
Gervasi, Vincenzo 161
Ghezzi, Carlo 131
Gollmann, Dieter 254
Guinea, Sam 131

Jackson, Michael 1
Johansen, Rasmus 185

Motahari Nezhad, Hamid R. 116

Sestoft, Peter 185, 216
Spangenberg, Stephan 185
Spoletini, Paola 131

Thalheim, Bernhard 59

Vaucouleur, Sebastien 216

	Title Page
	Preface
	Table of Contents
	Foundations and Methodology
	The Name and Nature of Software Engineering
	Introduction
	What Is Software Engineering?
	Symbolic Problems
	Concrete Problems
	The Problem World as a Given
	Non-formal Problem Domains
	Reasoning in Non-formal Domains
	Relating Formal and Non-formal

	Some Engineering Practices
	Specialisation in Engineering
	Normal Design
	The Fruit of Specialisation
	Component Structure
	Formal Analysis in Normal Design
	Normal Properties and Analysis
	Normal Design and Requirements
	The Role of Failure
	Unique and Standard Problem Worlds

	Some Tentative Comparisons
	Specialisation in Software Engineering
	‘System’ and ‘Application’ Software Products
	Radical Design in Software-Intensive Systems
	Mitigations for Radical Design
	A Problem-Oriented Approach to Structure
	Problem-Oriented Components: An Example
	The Content of Normal Design
	Failures in Component Design
	Composition in Software Engineering
	Designing for Failure
	Normal and Radical Composition
	Radical Requirements and Specifications
	Empirical Studies

	Concluding Reflections
	References

	A Modeling Language for Program Design and Synthesis
	Introduction
	Background
	Program Synthesis and Product Lines
	Simple Algebraic Models of Product Lines
	Program Synthesis

	Testing Software Product Lines4
	Refactoring Product Lines
	Operations for Program Synthesis8
	Conclusions
	References

	A Method for Verifiable and Validatable Business Process Modeling
	Introduction
	The Scheme for Workflow Interpreter Rules
	Framework for BPMN Execution Model
	Business Process Diagram Elements
	Token-Based Sequence Flow Interpretation
	BPMN Best Practice Normal Form

	BPMN Execution Model for Gateway Nodes
	AND-Split (Fork) Gateway Nodes
	AND-Join (Synchronization) Gateway Nodes
	OR-Split Gateway Nodes
	OR-Join Gateway Nodes
	BPMN Instances of Gateway Rules
	Gateway Pattern (Complex Gateway Nodes)

	BPMN Execution Model for Event Nodes
	Start Events
	End Events
	Intermediate Events

	BPMN Execution Model for Activity Nodes
	Task Nodes
	Iterative Activity Nodes
	Subprocess Nodes

	Related Work
	Conclusion and Future Work
	List of Some Themes for Reviewing the Current BPMN Standard

	Appendix: The BPMN Execution Model in a Nutshell
	The Scheduling and Behavioral Rule Schemes
	Gateway Rules
	Event Rules
	Activity Rules

	Appendix: ASMs in a Nutshell
	ASMs = FSMs with Arbitrary Locations

	References

	SOA and Web Services
	Service Oriented Architecture: Overview and Directions
	Introduction
	Software Integration
	Motivating Example
	Integration Layers
	Integration Technologies before SOA

	Service Oriented Architecture
	SOA Realization Technologies
	Analysis of SOA Approaches Using Integration Layers

	Conclusions and Future Directions
	References

	A Guided Tour through SAVVY-WS: A Methodology for Specifying and Validating Web Service Compositions
	Introduction
	Background Material
	BPEL
	ALBERT

	A Bird-Eye View of SAVVY-WS
	Running Examples
	Example 1: $On Road Assistance$
	Example 2: $Car Rental Agency$

	Specifying Services with ALBERT
	Specifying the $On Road Assistance$ Process
	Specifying the $Car Rental Agency$ Process

	Design-Time Verification
	Example 1: Model Checking the $On Road Assistance$ Process
	Example 2: Model Checking the $Car Rental Agency$ Process

	Run-Time Monitoring
	Example 1: Monitoring the $On Road Assistance$ Process
	Example 2: Monitoring the $Car Rental Agency$ Process

	Related Work
	Conclusion
	References
	A ALBERT Formal Semantics

	Software Technology
	Software Manipulation with Annotations in Java
	Introduction
	Java Annotations
	The Annotations Model in Java 5
	Limitations of the Java 5 Annotation Model

	The@Java Language
	Syntax Extension
	Compilation Strategy

	Manipulating Annotated Code
	The JDAsm Library
	Notation and Definitions
	Operations
	Examples
	Performance

	Applications
	Logging
	Environment-Based Reconfiguration
	Dynamic Optimization
	Adaptable Declarative Security
	Parallelization

	Conclusions and Future Work
	References

	Zero-Overhead Composable Aspects for .NET
	Introduction
	Introduction to Yiihaw
	An Example Weaving
	Interceptions
	Introductions
	Modifications

	Generic Types in “Around” Advice
	Why Wrapping/Unwrapping Overhead?
	The Proceed Method
	Generic Advice Methods
	Bounded Generic Advice
	Using the Receiver Object
	Example: Universal and Statically Typesafe Synchronization
	The Applicability of Advice

	Yiihaw Implementation
	Assembly Rewriting
	Handling Interceptions
	Replacing Generic Variables during Weaving
	Updating Code and Variable References
	Handling GetTarget during Weaving
	The Join Point API
	Weave-Time Checks
	Properties of the Woven Result

	Further Weaving: Advising Woven Code
	Advice Composition: Advising Advice
	Evaluation and Applications
	Generating Customized Collection Libraries
	Customization of a Layered ERP System
	Performance of Woven Code
	Related Work: Other Aspect Weavers

	Current Limitations of the Yiihaw Weaver
	Yiihaw Does Not Support Aspect Instances
	No Dynamic Join Points
	Only Method Execution Pointcuts
	Limited Pointcut Language
	No Instances of Generic Advice Classes
	No Generic Target Classes
	The Proceed<T> Method Can Be Called Only Once in Advice
	No Special Debugging Support

	The Expression Problem
	Future Work
	Conclusion
	References

	Technologies for Evolvable Software Products: The Conflict between Customizations and Evolution
	Introduction and Definitions
	The Upgrade Problem
	Customizable Software
	Software Evolution
	The Evolution of Specifications
	Upgrade Problems in Operating Systems
	Conclusion on the Upgrade Problem

	Case Study: Dynamics AX and NAV
	Add-ons and Customizations
	Dynamics NAV Versus Dynamics AX
	The Dynamics Ecosystem
	What Constitutes an Upgrade
	Upgrade Problems in Dynamics NAV and Dynamic AX
	Constraints on a Solution to the Dynamics Upgrade Problem
	Handling Upgrade in Dynamics NAV
	The Layered Structure of a Dynamics AX Application
	Customization Using AX Layers
	Mitigating Code Upgrade Problems in Dynamics AX

	Evaluation Criteria
	Need to Anticipate Customizations
	Control over Customizations
	Resilience to Kernel Evolution
	Support for Multiple Customizations
	Runtime Performance Penalty
	Illustration of the Criteria

	Survey of Software Customization Methods
	Inheritance
	Information Hiding Using Interfaces
	Parametric Polymorphism
	Synchronous Events
	Partial Methods as Statically Bound Events
	Mixins and Traits
	Aspect-Oriented Programming
	Software Product Lines Using AHEAD
	Software Product Lines Using Multi-dimensional Separation of Concerns
	The Dynamics AX Layer Model
	Summary Evaluation

	Conclusion
	References

	Security
	Security in Distributed Applications
	History of Distributed Systems Security
	1970s – The Age of the Mainframe
	1980s – The Age of the Personal Computer
	1990s – The Age of the Internet
	2000s – The Age of E-Commerce

	Web Applications
	Sessions
	Cookie Poisoning
	Code Origin Policies

	SQL Injection Attack
	Cross-Site Scripting
	Defending against XSS
	Cookie Stealing

	Cross-Site Request Forgery
	JavaScript Hijacking
	DNS Rebinding Attack
	Conclusions – Know Thyself!
	References

	Author Index

